Human granulocytic anaplasmosis (HGA) is an emerging tick-borne disease caused by Anaplasma phagocytophilum, an obligate intracellular bacterium of neutrophils. A. phagocytophilum infection impairs neutrophil function by transcriptional reprogramming, where the reprogrammed neutrophil promotes inflammatory recruitment of new neutrophils, tissue injury, ineffective regulation of inflammation, and poor antimicrobial responses. We studied altered neutrophil function with A. phagocytophilum infection and focused on how the nuclear effector protein AnkA, when delivered into the host cell where it binds to promoters of genes regulated with infection, induces epigenetic chromatin remodeling and transcriptional reprogramming. The granulocyte transcriptome with A. phagocytophilum infection shows a number of differentially transcribed genes that promote infection [3-6]. Given the meager genomic resources of A. phagocytophilum, it is difficult to explain the extent of host transcriptional change and functional reprogramming by individual translocated effector proteins. This implies that the bacterium exerts influence over global gene transcription, including chromatin and histone remodeling, perhaps by targeting conserved mechanisms of transcriptional regulation such as in cellular differentiation and neoplasia. AnkA has properties that suggest function as a matrix attachment region-binding protein that could regulate access of chromosomal territories to transcriptional modifiers, a new paradigm in bacteria-host interactions. We hypothesize that AnkA binds to promoters of some transcriptionally regulated genes and modifies or recruits modifiers of epigenetic chromatin marks or transcription factors. In addition, we hypothesize that A. phagocytophilum reprograms the global neutrophil transcriptome by altering the epigenome through AnkA"s action on nuclear matrix, chromatin, and transcriptional apparatus recruitment. We propose the following aims: 1. To identify AnkA binding sites in the CYBB promoter and to define AnkA domains or motifs involved in CYBB promoter binding and transcriptional activity. 2. To determine whether AnkA affects host gene transcription through direct action at the CYBB promoter or through recruitment of chromatin remodeling or transcription factors. 3. To determine whether AnkA functions as a matrix attachment region-binding protein that tethers DNA to nuclear matrix, regulates DNA loopscape, and permits docking of other chromatin modifiers in global transcriptional regulation. The effects that bacteria have over cellular transcription are increasingly recognized. Testing these hypotheses will provide evidence of a potentially powerful mechanism for prokaryotic control over eukaryotes. The long- term goals are to develop a mechanistic understanding of how bacteria with intimate host cell associations circumvent host functions. This information could allow rational preventions and therapies for HGA, but could also span biology and medicine, since such molecules could be engineered as epigenetic tools or therapies.

Public Health Relevance

Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by an intracellular bacterium, Anaplasma phagocytophilum that must live within neutrophils and similar cells. Interestingly, neutrophils are the major early host defense cells, and A. phagocytophilum alters their function to benefit survival of the bacteria. The altered function occurs mostly because the mRNA-producing machinery of the cell is altered by infection with this bacterium. We learned that one protein made by the bacterium, AnkA, is transported to the neutrophil's nucleus where mRNA is made, and its presence there changes how mRNA is made. In fact, the magnitude of changes in mRNA made by the cell are very difficult to explain based on AnkA altering mRNA made from individual genes. We propose to study the exact way that AnkA changes mRNA production from single genes, and to study whether it also affects the structure and function of chromosomes in a way that mRNA production is drastically altered. This information could provide evidence of an entirely new way for bacteria to control host cells, could define some aspects of normal cell function, and might provide new tools, even new drugs, for studying cells and their function in health and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI044102-13
Application #
8477107
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Perdue, Samuel S
Project Start
2000-09-01
Project End
2013-07-31
Budget Start
2013-06-01
Budget End
2013-07-31
Support Year
13
Fiscal Year
2013
Total Cost
$125,426
Indirect Cost
$48,947
Name
Johns Hopkins University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Rennoll-Bankert, Kristen E; Sinclair, Sara H; Lichay, Marguerite A et al. (2014) Comparison and characterization of granulocyte cell models for Anaplasma phagocytophilum infection. Pathog Dis 71:55-64
Kang, Yan-Jun; Diao, Xiu-Nian; Zhao, Gao-Yu et al. (2014) Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales. BMC Evol Biol 14:167
Choi, Kyoung-Seong; Scorpio, Diana G; Dumler, J Stephen (2014) Stat1 negatively regulates immune-mediated injury with Anaplasma phagocytophilum infection. J Immunol 193:5088-98
Dumler, J Stephen (2012) The biological basis of severe outcomes in Anaplasma phagocytophilum infection. FEMS Immunol Med Microbiol 64:13-20
Dumler, J Stephen (2010) Fitness and freezing: vector biology and human health. J Clin Invest 120:3087-90
Garcia-Garcia, Jose C; Rennoll-Bankert, Kristen E; Pelly, Shaaretha et al. (2009) Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect Immun 77:2385-91
Garcia-Garcia, Jose C; Barat, Nicole C; Trembley, Sarah J et al. (2009) Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog 5:e1000488
Thomas, Rachael J; Dumler, J Stephen; Carlyon, Jason A (2009) Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev Anti Infect Ther 7:709-22
Bakken, Johan S; Dumler, Stephen (2008) Human granulocytic anaplasmosis. Infect Dis Clin North Am 22:433-48, viii
Dumler, J Stephen; Madigan, John E; Pusterla, Nicola et al. (2007) Ehrlichioses in humans: epidemiology, clinical presentation, diagnosis, and treatment. Clin Infect Dis 45 Suppl 1:S45-51

Showing the most recent 10 out of 29 publications