Salmonella are facultative intracellular pathogens which cause significant diseases in humans and animals. These organisms cause several disease syndromes, including enteric (typhoid) fever, gastroenteritis, bacteremias and focal infections. Typhoid fever is a severe systemic illness which is mostly a problem in the developing world and in travelers. Non-typhoidal salmonella infections are increasing in the USA and are largely associated with contaminated food. Salmonellae infections are most severe in infants, the elderly, and in immunosuppressed individuals. This application proposes to study a set of virulence genes, termed Salmonella translocated effectors, that are translocated across the phagosome membrane into the eucaryotic cell cytoplasm by a type III secretion system encoded on Salmonella pathogenicity island II will be studied. This application proposes to further define these proteins, and to study in molecular detail their role in bacterial virulence.

Public Health Relevance

Salmonellosis is the most common cause of bacterial diarrhea in the United States and typhoid fever remains an important global health problem for which antibiotic resistance is increasing. Studies of the molecular mechanisms of Salmonella virulence for humans and animals could lead to new vaccines and therapeutic strategies to prevent and treat Salmonellae infections.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Alexander, William A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Levin, Itay; Eakin, Catherine; Blanc, Marie-Pierre et al. (2010) Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase. Proc Natl Acad Sci U S A 107:2848-53
Vinh, Dani B N; Ko, Dennis C; Rachubinski, Richard A et al. (2010) Expression of the Salmonella spp. virulence factor SifA in yeast alters Rho1 activity on peroxisomes. Mol Biol Cell 21:3567-77
Ohlson, Maikke B; Huang, Zhiwei; Alto, Neal M et al. (2008) Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4:434-46
Wasylnka, Julie A; Bakowski, Malina A; Szeto, Jason et al. (2008) Role for myosin II in regulating positioning of Salmonella-containing vacuoles and intracellular replication. Infect Immun 76:2722-35
Haraga, Andrea; Ohlson, Maikke B; Miller, Samuel I (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6:53-66
Haraga, Andrea; Miller, Samuel I (2006) A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol 8:837-46
Ohlson, Maikke B; Fluhr, Kerry; Birmingham, Cheryl L et al. (2005) SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice. Infect Immun 73:6249-59
Miao, Edward A; Brittnacher, Mitchell; Haraga, Andrea et al. (2003) Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol Microbiol 48:401-15
Freeman, Jeremy A; Ohl, Michael E; Miller, Samuel I (2003) The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect Immun 71:418-27
Haraga, Andrea; Miller, Samuel I (2003) A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect Immun 71:4052-8

Showing the most recent 10 out of 13 publications