The assembly and release of HIV-1 particles is quite complex, in that a number of viral and cellular RNAs and proteins participate, and while much has been learned about this process, much remains to be discovered. The Gag protein is central to the assembly and release of HIV-1 and all other retrovirus particles. A key function of the Gag protein that will be one focus of tis proposal is the recruitment and packaging of viral genomic RNA (gRNA). Reciprocally, gRNA may help to drive the recruitment of additional Gag molecules into a virion as assembly progresses. However, the full extent to which RNA participates in particle assembly in cells, and how Gag:RNA interactions change as assembly is initiated and completed remain to be defined. The experiments proposed in specific aim 1 will be the first to determine precisely how HIV-1 Gag and gRNA interact in cells. These studies could identify the very first as well as subsequent interactions between Gag protein and gRNA as well as between gRNA and antiviral cytidine deaminases. Following assembly, HIV-1 particles depart from the surface of the infected cell, to colonize neighboring or distal uninfected cells. During the previous funding period, we identified an IFN-induced membrane protein, termed tetherin, as a host defense molecule that inhibits HIV-1 particle release. Our work has demonstrated that tetherin acts directly, to retain nascent virions on the cell surface, but key mechanistic details of how tetherin functions, and what role t plays in preventing the dissemination of viral infection in cultured cells and in vivo remain to b determined.
In specific aim 2, we will perform a series of in vitro and in vivo experiments to address these key questions.

Public Health Relevance

The genesis of infectious extracellular HIV-1 particles is essential for the propagation of infection between individual cells and hosts. Understanding HIV-1 particle assembly and release may offer a range of opportunities for intervention as a therapeutic strategy. This proposal seeks to understand how HIV-1 genetic material is packaged into virions and how antiviral proteins interfere with the genesis of infectious particles.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-D (02))
Program Officer
Stansell, Elizabeth H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Aaron Diamond AIDS Research Center
New York
United States
Zip Code
Del Prete, Gregory Q; Ailers, Braiden; Moldt, Brian et al. (2014) Selection of unadapted, pathogenic SHIVs encoding newly transmitted HIV-1 envelope proteins. Cell Host Microbe 16:412-8
Hatziioannou, Theodora; Del Prete, Gregory Q; Keele, Brandon F et al. (2014) HIV-1-induced AIDS in monkeys. Science 344:1401-5
Kutluay, Sebla B; Zang, Trinity; Blanco-Melo, Daniel et al. (2014) Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell 159:1096-109
Bleck, Marina; Itano, Michelle S; Johnson, Daniel S et al. (2014) Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc Natl Acad Sci U S A 111:12211-6
Rihn, Suzannah J; Wilson, Sam J; Loman, Nick J et al. (2013) Extreme genetic fragility of the HIV-1 capsid. PLoS Pathog 9:e1003461
Venkatesh, Siddarth; Bieniasz, Paul D (2013) Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog 9:e1003483
McNatt, Matthew W; Zang, Trinity; Bieniasz, Paul D (2013) Vpu binds directly to tetherin and displaces it from nascent virions. PLoS Pathog 9:e1003299
Bieniasz, Paul D (2012) An overview of intracellular interactions between immunodeficiency viruses and their hosts. AIDS 26:1243-54
Jouvenet, Nolwenn; Simon, Sanford M; Bieniasz, Paul D (2011) Visualizing HIV-1 assembly. J Mol Biol 410:501-11
Liberatore, Rachel A; Bieniasz, Paul D (2011) Sensing retroviruses. Immunity 35:8-10

Showing the most recent 10 out of 40 publications