The overall objective of this revised second competitive renewal is to continue our investigations on the role of photodynamic therapy (PDT) in treating localized infections. PDT employs non-toxic photosensitizers (PS) and harmless visible light (frequently red light for increased tissue penetration) that combine in the presence f oxygen to produce reactive oxygen species that damage biological molecules such as proteins, lipids and nucleic acids and subsequently cause cell death. In the two funding periods of this grant we have synthesized and characterized several novel highly active antimicrobial PS and demonstrated their effectiveness in treating mouse models of infected wounds, burns and abscesses. In some cases PDT can save mice from a certain death due to sepsis that develops from an untreated localized infection. A combination of the appropriate molecular design of the PS, together with topical or local application of the PS to the infected area and a short drug-ligh interval allows high selectivity for microbial cells compared to the surrounding host cells. The broad motivation for this line of research is the relentless worldwide increase in antibiotic resistance amongst pathogenic microbes, and it has been found that multi-antibiotic resistant strains are in general as sensitive to photodynamic inactivation (PDI) as na?ve strains, and moreover that microbial cells are unable to develop resistance to PDI.
Aim 1 will explore a finding that the clinically approved PS, methylene blue and related penothiazinium salts could have their antimicrobial PDT effect potentiated by addition of simple ions like iodide. While we initially interpreted this to involve electron transfer (oxidation) from hydroxyl radicals, we have now discovered that we can still get killing in the absence of oxygen. In addition to studying the contribution of Type 1 and Type 2 photochemical mechanisms we are now investigating a possible mechanism involving direct oxidation of iodide (and azide) anions by excited state MB to produce iodide/azide radicals that efficiently kill microbial cells.
Aim 2 proposes a solution t the biggest barrier to the effectiveness of antimicrobial PDT in vivo i. e. delivering the photosensitizer (PS) into the infected tissue. Since all highly effective antimicrobial PS have cationic charges they are ideally suited for delivery into tissue by electricity. We will explore te use of iontophoresis and electroporation singly and in combination to deliver antimicrobial PS (and iodide) into ex vivo pigskin and into hairless mouse skin.
Aim 3 responds to the reviewers'criticisms by exploring the combination of PDT with traditional systemic antibiotics to prevent regrowth of bacteria after PDT. Preliminary data has shown that a sub-therapeutic regimen of tobramycin can synergistically combine with a PDT regimen mediated by a fullerene and white light to save mice from dying in a Pseudomonas wound infection model. We will study possible synergy in vitro using MIC determinations with PDT and/or antibiotics In aim 4 in response to the reviewers'criticisms we will study selectivity for killing microbial cells (both fungi and bacteria) over mammalian skin cells (both mouse and human) and look at possible damage in tissue removed from mice. We have found some highly effective antifungal PS and will study these in vitro and in vivo with emphasis on selectivity. We now have access to Candida albicans that has been genetically engineered to express Gaussia princeps luciferase and Aspergillus fumigates expressing firefly luciferase that form localized infections that can be imaged by bioluminescence imaging.

Public Health Relevance

The relentless worldwide increase in antibiotic resistance amongst pathogenic microbes necessitates development of alternative approaches to treat stubborn localized infections. Photodynamic therapy is becoming more often clinically used in diseases such as periodontitis, sinusitis, endodontics, and prevention of pneumonia. Knowledge gained from the successful completion of this current proposal could be introduced into clinical practice for burns and orthopedic infections relatively rapidly.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-DDR-T (09))
Program Officer
Huntley, Clayton C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Hu, Yongxuan; Huang, Xiaowen; Lu, Sha et al. (2015) Photodynamic therapy combined with terbinafine against chromoblastomycosis and the effect of PDT on Fonsecaea monophora in vitro. Mycopathologia 179:103-9
Sperandio, Felipe F; Simões, Alyne; Corrêa, Luciana et al. (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8:795-803
Ferraresi, Cleber; Parizotto, Nivaldo Antonio; Pires de Sousa, Marcelo Victor et al. (2015) Light-emitting diode therapy in exercise-trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. J Biophotonics 8:740-54
Ferraresi, Cleber; Kaippert, Beatriz; Avci, Pinar et al. (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol 91:411-6
Xuan, Weijun; Agrawal, Tanupriya; Huang, Liyi et al. (2015) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8:502-11
Golberg, Alexander; Broelsch, G Felix; Vecchio, Daniela et al. (2015) Pulsed electric fields for burn wound disinfection in a murine model. J Burn Care Res 36:13-Jul
Sabino, C P; Garcez, A S; Núñez, S C et al. (2015) Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals. Lasers Med Sci 30:1657-65
Huang, Liyi; Wang, Min; Dai, Tianhong et al. (2014) Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70]fullerene: in vitro and in vivo studies. Nanomedicine (Lond) 9:253-66
Jimenez, Joaquin J; Wikramanayake, Tongyu C; Bergfeld, Wilma et al. (2014) Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 15:115-27
Reginato, Eleonora; Wolf, Peter; Hamblin, Michael R (2014) Immune response after photodynamic therapy increases anti-cancer and anti-bacterial effects. World J Immunol 4:1-11

Showing the most recent 10 out of 148 publications