This application is on preventing Human African trypanosomiasis (HAT), which kills thousands of people each year in sub-Saharan Africa. The disease is caused by African trypanosomes transmitted by the tsetse fly. No mammalian vaccines, or effective and affordable therapeutic drugs exist. In contrast, reduction of tsetse populations can be highly efficacious for disease control although traditional strategies have been difficult to sustain because they require extensive community participation in deprived, remote and war-torn regions typically afflicted by this disease. Recombinant technologies now promise the development of novel approaches, including modification of the vector competence of the fly. This application proposes to investigate the fundamental aspects of tsetse immune biology as it relates to the pathogenic trypanosomes it transmits, and the obligate mutualist symbionts it relies on for fecundity. The application has two goals: (1) to investigate the molecular basis of tsetse's refractoriness to trypanosome transmission with a focus on the role of pathogen recognition molecules, and (2) to understand the responses and the evolutionary dynamics of tsetse's immune reactions that regulate symbiotic homeostasis and vector competence. Identification of host immune proteins that result in parasite resistance can strengthen efforts that can reduce tsetse's vector competence via genetic modification. Understanding the mechanism of tolerance to symbiotic fauna may result in novel vector control strategies that aim to reduce tsetse's fecundity.

Public Health Relevance

This grant will investigate the molecular and biochemical mechanisms in the insect tsetse fly that enable the transmission of the parasite African trypanosome, the causative agents of Sleeping Sickness disease in humans. The ultimate goal is to be able to interfere with parasite transmission in the fly.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-M (02))
Program Officer
Costero, Adriana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Public Health & Prev Medicine
Schools of Medicine
New Haven
United States
Zip Code
Aksoy, Emre; Telleria, Erich L; Echodu, Richard et al. (2014) Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol 80:4301-12
Weiss, Brian L; Savage, Amy F; Griffith, Bridget C et al. (2014) The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes. J Immunol 193:773-82
Aksoy, Serap; Attardo, Geoffrey; Berriman, Matt et al. (2014) Human African trypanosomiasis research gets a boost: unraveling the tsetse genome. PLoS Negl Trop Dis 8:e2624
International Glossina Genome Initiative (2014) Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science 344:380-6
Telleria, Erich Loza; Benoit, Joshua B; Zhao, Xin et al. (2014) Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands. PLoS Negl Trop Dis 8:e2649
Wang, Jingwen; Weiss, Brian L; Aksoy, Serap (2013) Tsetse fly microbiota: form and function. Front Cell Infect Microbiol 3:69
Smith, Caitlin L; Weiss, Brian L; Aksoy, Serap et al. (2013) Characterization of the achromobactin iron acquisition operon in Sodalis glossinidius. Appl Environ Microbiol 79:2872-81
Balmand, Severine; Lohs, Claudia; Aksoy, Serap et al. (2013) Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol 112 Suppl:S116-22
Abd-Alla, Adly M M; Bergoin, Max; Parker, Andrew G et al. (2013) Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens. J Invertebr Pathol 112 Suppl:S2-10
Wang, Jingwen; Brelsfoard, Corey; Wu, Yineng et al. (2013) Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies. J Invertebr Pathol 112 Suppl:S32-9

Showing the most recent 10 out of 32 publications