Infection of a cell by HIV-1 proceeds through a series of steps, each of which defines a potential target for antiviral drug intervention. Current drugs target key viral activities catalyzed by the protease, reverse transcriptase, and integrase enzymes, but emergence of drug resistance calls for continual development of new drugs with novel modes of action. HIV-1 depends on interactions with numerous cellular proteins as it replicates and maraviroc, a drug that disrupts the interaction between the viral envelope glycoprotein and cellular surface CCR5 receptor, is an approved inhibitor of a virus-cell interaction that blocks the ability of the virus to enter the cell. Also crucial to HIV-1 replicatin is the ability for the preintegration complex intermediate that houses the integrase and reverse transcript to access the chromosomes inside the cell nucleus, where viral DNA integration takes place. Lentiviruses like HIV-1 use an energy-dependent process to transport their preintegration complexes through nuclear pore complexes that riddle the biphasic nuclear envelope, though the molecular mechanisms underlying HIV-1 nuclear transport are poorly understood. Work supported by this renewal grant application identified numerous cellular proteins as potential critical cofactors of HIV-1 replication and a significant number of these, including transportin-3, nucleoporin 153, and nucleoporin 358 were accordingly implicated in preintegration complex nuclear import due to their known functions within the cell. Subsequent work indeed confirmed this contention, though it remains unclear how these and other cellular and viral proteins precisely dictate HIV-1 preintegration complex nuclear import. Using numerous virology, biochemical, and genetic approaches, the work proposed herein will determine the mechanisms of HIV-1 nuclear import, focusing on novel protein interactions between the virus and host cellular components that are essential for the process. Such discoveries will define new targets for the development of inhibitors that block critical HIV-host interactions, which would be expected to increase the breadth of future antiviral armaments in the ongoing battle to control the spread of HIV/AIDS.

Public Health Relevance

Despite HAART successes, drug resistance emerges due to the inherent viral genetic barrier required to build resistance to any given compound plus associated toxicity of compound use, which significantly affects patient compliance. These observations highlight the ongoing need to develop new antiviral inhibitors, and crucial interactions between HIV-1 and cellular cofactors have been highlighted in recent years as novel drug targets. This proposal will uncover novel details of how the HIV-1 preintegration complex, a critical viral replication intermediate, accesses the cellular nucleus where viral integration occurs, which will define novel targets for antiviral drug development moving forward.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI052014-12
Application #
8617205
Study Section
Special Emphasis Panel (ZRG1-AARR-D (03))
Program Officer
Sharma, Opendra K
Project Start
2002-04-01
Project End
2017-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
12
Fiscal Year
2014
Total Cost
$393,750
Indirect Cost
$168,750
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Fribourgh, Jennifer L; Nguyen, Henry C; Matreyek, Kenneth A et al. (2014) Structural insight into HIV-1 restriction by MxB. Cell Host Microbe 16:627-38
Maertens, Goedele N; Cook, Nicola J; Wang, Weifeng et al. (2014) Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci U S A 111:2728-33
Kvaratskhelia, Mamuka; Sharma, Amit; Larue, Ross C et al. (2014) Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 42:10209-25
Shah, Vaibhav B; Shi, Jiong; Hout, David R et al. (2013) The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. J Virol 87:422-32
Matreyek, Kenneth A; Engelman, Alan (2013) Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5:2483-511
Koh, Yasuhiro; Wu, Xiaolin; Ferris, Andrea L et al. (2013) Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and LEDGF/p75 on the efficiency and specificity of viral DNA integration. J Virol 87:648-58
Matreyek, Kenneth A; Yucel, Sara S; Li, Xiang et al. (2013) Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog 9:e1003693
Ambrose, Zandrea; Lee, KyeongEun; Ndjomou, Jean et al. (2012) Human immunodeficiency virus type 1 capsid mutation N74D alters cyclophilin A dependence and impairs macrophage infection. J Virol 86:4708-14
Yan, Nan; O'Day, Elizabeth; Wheeler, Lee Adam et al. (2011) HIV DNA is heavily uracilated, which protects it from autointegration. Proc Natl Acad Sci U S A 108:9244-9
Koh, Yasuhiro; Haim, Hillel; Engelman, Alan (2011) Identification and characterization of persistent intracellular human immunodeficiency virus type 1 integrase strand transfer inhibitor activity. Antimicrob Agents Chemother 55:42-9

Showing the most recent 10 out of 35 publications