Salmonella enterica represents a considerable burden to human and animal health worldwide. A significant effort has been made to understand the pathogenesis of this intracellular pathogen and the host factors that mediate host defense. Clinical and experimental evidence have unequivocally demonstrated that CD4+ T cells and IFN3 are critical for preventing systemic disease by non-typhoidal Salmonella. IFN3 likely exerts diverse functions in resistance to this intracellular bacterium, including the activation of the antimicrobial arsenal of macrophages. Recent studies have indicated that IFN3 synergizes with Salmonella ligands to enhance the transcription of iNOS. The resultant high NO synthesis mediates most of the profound and long-lasting anti-Salmonella activity of IFN3-primed macrophages. The molecular mechanism(s) by which IFN3- activated NO synthesis enhances the anti-Salmonella activity of macrophages remains, however, largely unknown. We have generated biochemical and genetic evidence in support of a model in which C203 of the SsrB response regulator that mediates global Salmonella pathogenicity island 2 (SPI2) transcription is an important target of reactive nitrogen species (RNS). The goal of this application is to identify the molecular mechanisms underlying the RNS-mediated repression of SPI2 transcription. It is hypothesized that NO congeners repress SPI2 transcription by S-nitrosylating (-SNO) C203 of the dimerization domain of the SsrB response regulator. Specifically, we propose to 1) determine the RNS-mediated modifications that inactivate SsrB regulatory functions;2) examine SPI2 function in the context of Salmonella antinitrosative defenses;3) select for ssrB variant alleles that render SsrB signaling insensitive to RNS;and 4) characterize SsrB residues critical for dimerization.

Public Health Relevance

Salmonella enterica represents a considerable burden to human and animal health worldwide. The mechanisms underlying the pathogenesis of salmonellosis are incompletely understood. The proposed research will shed light on the host pathogen interactions that modulate the expression of a virulence factors key to the ability of Salmonella to cause human disease.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-S (03))
Program Officer
Alexander, William A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Medicine
United States
Zip Code
Henard, Calvin A; Tapscott, Timothy; Crawford, Matthew A et al. (2014) The 4-cysteine zinc-finger motif of the RNA polymerase regulator DksA serves as a thiol switch for sensing oxidative and nitrosative stress. Mol Microbiol 91:790-804
Song, Miryoung; Husain, Maroof; Jones-Carson, Jessica et al. (2013) Low-molecular-weight thiol-dependent antioxidant and antinitrosative defences in Salmonella pathogenesis. Mol Microbiol 87:609-22
McCollister, Bruce D; Myers, Jesse T; Jones-Carson, Jessica et al. (2007) N(2)O(3) enhances the nitrosative potential of IFNgamma-primed macrophages in response to Salmonella. Immunobiology 212:759-69
Jones-Carson, Jessica; McCollister, Bruce D; Clambey, Eric T et al. (2007) Systemic CD8 T-cell memory response to a Salmonella pathogenicity island 2 effector is restricted to Salmonella enterica encountered in the gastrointestinal mucosa. Infect Immun 75:2708-16
Fink, Ryan C; Evans, Matthew R; Porwollik, Steffen et al. (2007) FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 189:2262-73
Bang, Iel-Soo; Liu, Limin; Vazquez-Torres, Andres et al. (2006) Maintenance of nitric oxide and redox homeostasis by the salmonella flavohemoglobin hmp. J Biol Chem 281:28039-47
McCollister, Bruce D; Bourret, Travis J; Gill, Ronald et al. (2005) Repression of SPI2 transcription by nitric oxide-producing, IFNgamma-activated macrophages promotes maturation of Salmonella phagosomes. J Exp Med 202:625-35
Jones-Carson, Jessica; Fantuzzi, Giamila; Siegmund, Britta et al. (2005) Suppressor alphabeta T lymphocytes control innate resistance to endotoxic shock. J Infect Dis 192:1039-46
Vazquez-Torres, Andres; Vallance, Bruce A; Bergman, Molly A et al. (2004) Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol 172:6202-8