The ability to regulate hematopoiesis and to maintain hematopoietic balance is critical to the welfare of an organism, whether it is to meet additional demands to combat invading pathogens, or to re-establish the hematopoietic compartment subsequent to myelo-ablative events. Aging is accompanied by a general decline in hematopoietic capabilities, contributing to an increasing susceptibility to infections and to autoimmune conditions. A key parameter in the overall maintenance of the hematopoietic compartment is the residency of hematopoietic stem and progenitor cells (HSPCs) in the appropriate supportive marrow niches. Sialylated glycans participate in diverse cellular adhesive processes impacting multiple aspects of immunity and trafficking;however, little is known of the roles glycans play in early hematopoietic processes. Our laboratory has recently uncovered a novel biologic function for the sialyltransferase, ST6Gal-1, in the regulation of HSPC proliferation. There is compelling evidence that HSPC surfaces can be remodeled by extracellular ST6Gal-1, in a glycosylation pathway divergent from the canonical ER/Golgi-based pathway. The data point to the novel concept that extracellular glycosyltransferases generated from distal sources can function as "systemic factors" in regulating hematopoiesis, putatively by the extracellular or extrinsic sialyl-modification of HSPC surface components. There are 4 Specific Aims. The first is to evaluate the impact of dysregulated ST6Gal-1 expression in the bone marrow hematopoietic compartment through the use of mice strains that differ only in the way they express ST6Gal-1.
The second aim i s to evaluate the relative contributions of the extrinsic and the canonical ER/Golgi-based pathways of ST6Gal-1 in sialylation of hematopoietic cell surfaces, with the ultimate aim of identifying the target molecules of extrinsic ST6Gal-1 action. The mechanism by which HSPCs are regulated by ST6Gal-1 will be the focus of Aim 3, through analysis of HSPC-stroma adhesion under static and flow-sheer conditions, and ST6Gal-1 impact on intracellular signaling pathways.
Aim 4 will evaluate the long-term impact of dysregulated ST6Gal-1 expression on hematopoietic capacities. The overall goal of this project is to understand the precise contribution and mechanism of ST6Gal-1 in the maintenance of hematopoietic functions, ultimately to yield glycan engineering strategies for effective modification of hematopoietic function.

Public Health Relevance

Hematopoiesis is the process through which bone marrow stem cells continuously regenerate all blood cell lineages while simultaneously self-renewing to replenish the stem cell pool. Regulating hematopoiesis is critical for meeting additional demands to combat invading pathogens and maintaining hematopoietic equilibrium. Ageing is accompanied by a decline in hematopoietic capabilities, contributing to an increased susceptibility to infections and autoimmune conditions. We have recently uncovered an entirely novel hematopoietic regulation pathway, mediated by the sialyltransferase, ST6Gal-1. We hypothesize those extracellular ST6Gal-1 functions as a "systemic factor" in regulating hematopoietic stem and progenitor cell behavior, putatively by the extracellular modification of hematopoietic cell surfaces. The overall goal of this project is to understand the contribution and mechanism of ST6Gal-1 in the maintenance of hematopoietic functions, ultimately to yield new treatments that effectively modify hematopoietic function.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Intercellular Interactions (ICI)
Program Officer
Minnicozzi, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Roswell Park Cancer Institute Corp
United States
Zip Code
Nasirikenari, Mehrab; Veillon, Lucas; Collins, Christine C et al. (2014) Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase. J Biol Chem 289:7178-89
Lee, Melissa M; Nasirikenari, Mehrab; Manhardt, Charles T et al. (2014) Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem 289:8742-8
Nasirikenari, Mehrab; Chandrasekaran, E V; Matta, Khushi L et al. (2010) Altered eosinophil profile in mice with ST6Gal-1 deficiency: an additional role for ST6Gal-1 generated by the P1 promoter in regulating allergic inflammation. J Leukoc Biol 87:457-66
Jones, Mark B; Nasirikenari, Mehrab; Feng, Li et al. (2010) Role for hepatic and circulatory ST6Gal-1 sialyltransferase in regulating myelopoiesis. J Biol Chem 285:25009-17
Su, Juan; You, Pu; Li, Wen-Lin et al. (2010) The existence of multipotent stem cells with epithelial-mesenchymal transition features in the human liver bud. Int J Biochem Cell Biol 42:2047-55
Marathe, Dhananjay D; Buffone Jr, Alexander; Chandrasekaran, E V et al. (2010) Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins. Blood 115:1303-12
Crespo, Helio J; Cabral, M Guadalupe; Teixeira, Alexandra V et al. (2009) Effect of sialic acid loss on dendritic cell maturation. Immunology 128:e621-31
Tao, Xin-Rong; Li, Wen-Lin; Su, Juan et al. (2009) Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J Cell Biochem 108:693-704
Marathe, Dhananjay D; Chandrasekaran, E V; Lau, Joseph T Y et al. (2008) Systems-level studies of glycosyltransferase gene expression and enzyme activity that are associated with the selectin binding function of human leukocytes. FASEB J 22:4154-67
Nasirikenari, Mehrab; Segal, Brahm H; Ostberg, Julie R et al. (2006) Altered granulopoietic profile and exaggerated acute neutrophilic inflammation in mice with targeted deficiency in the sialyltransferase ST6Gal I. Blood 108:3397-405