Yersinia pestis, an etiological agent of the acute diseases bubonic and pneumonic plague and one of the most devastating epidemic-causing bacteria experienced by mankind, is now classified as a re-emerging human pathogen by the WHO. The potential for contagion, lack of an effective vaccine, and emergence of multiple antibiotic- resistant strains place Y. pestis at the top of the U.S. select agent list as a potential bioterrorism agent. Our long-term goal is to elucidate molecular mechanisms underlying the acute bacterial infectious process of Y. pestis . The more immediate objective is to identify and evaluate new and existing antigens of Y. pestis to develop a new generation plague vaccine. The complete genome sequence of Y. pestis is now known.
Four aims are proposed.
In Aim 1 we will prepare a Braun/murein lipoprotein (lpp)-minus mutant of Y. pestis , based on our recent data that the patented Ipp isogenic mutants of Salmonella Typhimurium and of Y pseudotuberculosis are avirulent in mice and provide protection against challenge with the wild-type bacterium. We will examine these mutants for immunological responses in mice to develop a live attenuated Y. pestis vaccine or use Y. pseudotuberculosis as a carrier for Y. pestis antigens.
Aim 2 will identify differentially or exclusively expressed genes (potentially virulence-associated) of Y. pestis by genomics and proteomics to evaluate new antigens for use in a recombinant subunit plague vaccine.
Aim 3 will examine the virulence potential of selected in vivo-expressed genes of Y. pestis by developing isogenic mutants and evaluating them for lethality in a mouse model and assess selected antigens'ability to provide immunity against Y. pestis challenge.
Aim 4 will examine potential use of the Ipp-minus mutants of Y. pseudotuberculosis and S. Typhimurium as carriers to deliver Y. pestis antigens by expressing selected genes either from a plasmid under an inducible promoter and/or chromosome of attenuated Y. pseudotuberculosis/S. Typhimurium or by DMA vaccination. Alternatively, a vaccine strain of S. Typhi (Ty21a) could also be used. We believe these multiple approaches will identify candidate antigens for a use in a new, efficacious plague vaccine.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI064389-05
Application #
7559660
Study Section
Special Emphasis Panel (ZRG1-IMM-G (03))
Program Officer
Mukhopadhyay, Suman
Project Start
2005-02-01
Project End
2011-01-31
Budget Start
2009-02-01
Budget End
2010-01-31
Support Year
5
Fiscal Year
2009
Total Cost
$422,557
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen et al. (2018) A Bacteriophage T4 Nanoparticle-Based Dual Vaccine against Anthrax and Plague. MBio 9:
Andersson, Jourdan A; Sha, Jian; Kirtley, Michelle L et al. (2018) Combating Multidrug-Resistant Pathogens with Host-Directed Nonantibiotic Therapeutics. Antimicrob Agents Chemother 62:
Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen et al. (2017) A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis. Front Immunol 8:687
Andersson, Jourdan A; Sha, Jian; Erova, Tatiana E et al. (2017) Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 7:448
Tiner, Bethany L; Sha, Jian; Cong, Yingzi et al. (2016) Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague. NPJ Vaccines 1:16020
Andersson, Jourdan A; Fitts, Eric C; Kirtley, Michelle L et al. (2016) New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 60:3717-29
Sha, Jian; Kirtley, Michelle L; Klages, Curtis et al. (2016) A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. Clin Vaccine Immunol 23:586-600
Fitts, Eric C; Andersson, Jourdan A; Kirtley, Michelle L et al. (2016) New Insights into Autoinducer-2 Signaling as a Virulence Regulator in a Mouse Model of Pneumonic Plague. mSphere 1:
Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian et al. (2015) High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 83:2065-81
Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L et al. (2015) Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun 83:1318-38

Showing the most recent 10 out of 44 publications