Apicomplexa are responsible for a number of important human diseases including malaria, toxoplasmosis, cryptosporidiosis and cyclosporidiosis. Management of these diseases rests heavily on chemotherapy but anti-parasitic drug treatment faces multiple challenges. These include poor overall potency, restriction to certain life-cycle stages, unwanted side effects, and rapidly emerging multiple drug resistance. A constant stream of new drugs and potential drug targets is required to stay abreast of the threat posed by these pathogens. One of the most promising sources of such parasite specific targets is the apicomplexan plastid or apicoplast. The apicoplast is unique to the parasite and its function is essential to parasite survival. This organelle is a holdover from a free-living photosynthetic past. The structure and biology of the apicoplast is remarkably complex as it is derived from the endosymbiotic marriage of two eukaryotes: a red alga and an auxotrophic protist. The goal of this application is to unravel the complexity of this biology in mechanistic detail and to identify future targets for intervention. Using Toxoplasma as a model organism we will conduct genetic, cell biological and biochemical approaches to characterize the function of two pathways that unfold in the outer compartments of the organelle and that we hypothesize are essential to the organelle and the parasites. We will complement this focused approach with a broader effort to define a comprehensive set of plastid proteins to continue to feed a pipeline of hypothesis-driven mechanistic experiments with strong candidate genes.

Public Health Relevance

Toxoplasma gondii is an important human pathogen that causes disease in the unborn fetus, young children and patients with a weakened immune system. We are a studying a unique cellular structure of the parasite that is related to the chloroplast of plants. A detailed understanding of the biology of this structure will lead us to new parasite specific interventions to treat and prevent disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI064671-09
Application #
8584226
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Rogers, Martin J
Project Start
2005-04-01
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
9
Fiscal Year
2014
Total Cost
$300,713
Indirect Cost
$98,213
Name
University of Georgia
Department
Public Health & Prev Medicine
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
van Dooren, Giel G; Yeoh, Lee M; Striepen, Boris et al. (2016) The Import of Proteins into the Mitochondrion of Toxoplasma gondii. J Biol Chem 291:19335-50
Sheiner, Lilach; Fellows, Justin D; Ovciarikova, Jana et al. (2015) Toxoplasma gondii Toc75 Functions in Import of Stromal but not Peripheral Apicoplast Proteins. Traffic 16:1254-69
Lévêque, Maude F; Berry, Laurence; Cipriano, Michael J et al. (2015) Autophagy-Related Protein ATG8 Has a Noncanonical Function for Apicoplast Inheritance in Toxoplasma gondii. MBio 6:e01446-15
Williams, Melanie J; Alonso, Hernan; Enciso, Marta et al. (2015) Two Essential Light Chains Regulate the MyoA Lever Arm To Promote Toxoplasma Gliding Motility. MBio 6:e00845-15
Suvorova, Elena S; Francia, Maria; Striepen, Boris et al. (2015) A novel bipartite centrosome coordinates the apicomplexan cell cycle. PLoS Biol 13:e1002093
Ramakrishnan, Srinivasan; Docampo, Melissa D; MacRae, James I et al. (2015) The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol Microbiol 97:64-76
Beckmann, Elena A; Köhler, Anna M; Meister, Cindy et al. (2015) Integration of the catalytic subunit activates deneddylase activity in vivo as final step in fungal COP9 signalosome assembly. Mol Microbiol 97:110-24
Lentini, Gaelle; Kong-Hap, Marie; El Hajj, Hiba et al. (2015) Identification and characterization of Toxoplasma SIP, a conserved apicomplexan cytoskeleton protein involved in maintaining the shape, motility and virulence of the parasite. Cell Microbiol 17:62-78
Daher, Wassim; Morlon-Guyot, Juliette; Sheiner, Lilach et al. (2015) Lipid kinases are essential for apicoplast homeostasis in Toxoplasma gondii. Cell Microbiol 17:559-78
Bowman, Jessica D; Merino, Emilio F; Brooks, Carrie F et al. (2014) Antiapicoplast and gametocytocidal screening to identify the mechanisms of action of compounds within the malaria box. Antimicrob Agents Chemother 58:811-9

Showing the most recent 10 out of 41 publications