This is a competing supplemental application in response to the Enabling RPGs to Leverage NCRR Center and Center-like Programs. The proposal is made based on our recent data suggesting a role of immune signaling pathways in snail immune defenses. This proposed study extends the scope of my current three-year R01 grant (NIAID, #AI067686). Understanding the fundamental mechanisms of internal defense in the snail Biomphalaria glabrata may lead to new methods for blocking the transmission of schistosomiasis, a snail-borne disease that affects 200 million people worldwide. Immune signaling pathways are evolutionarily conserved and believed to control most immune-related gene expression. Transcription factors are the key molecules regulating a given pathway. The immune signaling pathways TLR (Toll-like receptor), Imd (Immune deficiency), and Jak (Janus kinas)/STAT (signal transducer and activator of transcription) regulated by nuclear factor-kappa B (NF-?B) and STAT transcription factors have been shown to play the central role in humoral and cellular immune responses. In spite of the enormous amount of data accumulated in a wide phylogenetic range of animals, nothing is known about the existence and function of these immune signaling pathways in B. glabrata. We have identified two NF-?Bs (BgRel and BgRelish) and two STATs (BgSTAT1 and 2) from B. glabrata and examined their expression. Based on our preliminary data, we hypothesize that TLR, Imd, and Jak/STAT pathways are conserved in B. glabrata in terms of functionality. To test our hypothesis, we propose to investigate whether TLR, Imd, and Jak/STAT signaling pathways are activated in snails after exposure to S. mansoni. The outcome of this study may open a new area in the studies of snail immune signal transduction, which should improve our understanding of snail immunity and ultimately benefit the long-term goal of schistosomiasis control.

Public Health Relevance

This proposed study will help us in better understanding the fundamental mechanisms of the internal defenses of the snail Biomphalaria glabrata, the intermediate host of human blood fluke Schistosoma mansoni. This may lead to new methods for blocking the transmission of Schistosomiasis, a snail-borne disease that affects 200 million people worldwide.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
3R01AI067686-03S1
Application #
7892908
Study Section
Special Emphasis Panel (ZRG1-IDM-S (95))
Program Officer
Costero, Adriana
Project Start
2010-05-17
Project End
2012-04-30
Budget Start
2010-05-17
Budget End
2012-04-30
Support Year
3
Fiscal Year
2010
Total Cost
$301,000
Indirect Cost
Name
University of New Mexico
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Zhang, Si-Ming; Coultas, Kristen A (2013) Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int J Parasitol Drugs Drug Resist 3:28-34
Coultas, Kristen A; Zhang, Si-Ming (2012) In vitro cercariae transformation: comparison of mechanical and nonmechanical methods and observation of morphological changes of detached cercariae tails. J Parasitol 98:1257-61
Zhang, Si-Ming; Coultas, Kristen A (2011) Identification and characterization of five transcription factors that are associated with evolutionarily conserved immune signaling pathways in the schistosome-transmitting snail Biomphalaria glabrata. Mol Immunol 48:1868-81
Hanington, Patrick C; Zhang, Si-Ming (2011) The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun 3:17-27
Hanington, Patrick C; Forys, Michelle A; Dragoo, Jerry W et al. (2010) Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proc Natl Acad Sci U S A 107:21087-92
Zhang, Si-Ming; Nian, Hong; Wang, Bo et al. (2009) Schistosomin from the snail Biomphalaria glabrata: expression studies suggest no involvement in trematode-mediated castration. Mol Biochem Parasitol 165:79-86
Zhang, Si-Ming; Zeng, Yong; Loker, Eric S (2008) Expression profiling and binding properties of fibrinogen-related proteins (FREPs), plasma proteins from the schistosome snail host Biomphalaria glabrata. Innate Immun 14:175-89
Zhang, Si-Ming; Nian, Hong; Zeng, Yong et al. (2008) Fibrinogen-bearing protein genes in the snail Biomphalaria glabrata: characterization of two novel genes and expression studies during ontogenesis and trematode infection. Dev Comp Immunol 32:1119-30
Zhang, Si-Ming; Zeng, Yong; Loker, Eric S (2007) Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics 59:883-98