Candida albicans is among the major human fungal pathogens, causing both mucosal and deep tissue infections. A significant risk factor for invasive C. albicans infection is the presence of an implanted medical device, which provides a surface for biofilm formation. The biofilm creates a protected microenvironment for survival of the pathogen. The immediate goal of studies here proposed is to define the key C. albicans genes and regulatory pathways that govern biofilm formation, and to move forward to yield mechanistic insight. The proposed studies build upon progress in the last funding period that defined two biofilm transcriptional regulators, Bcr1 and Zap1/Csr1, along with several of their functional target genes. Our main objectives now are (1) to define the interactions among Bcr1 regulated gene products that promote biofilm adherence, (2) to determine roles of Zap1 target gene families in accumulation of extracellular matrix material, and (3) to define the functions of newly discovered transcriptional regulators that promote adherence of yeast-form cells

Public Health Relevance

Presence of an implanted medical device, such as a venous catheter, is a major risk factor for lethal disseminated Candida infections. Proposed studies will improve our understanding of mechanisms that permit Candida growth on implanted devices. The mechanistic understanding will permit longer-term development of new therapeutic and diagnostic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI067703-07
Application #
8223166
Study Section
Special Emphasis Panel (ZRG1-IDM-S (02))
Program Officer
Duncan, Rory A
Project Start
2006-01-01
Project End
2015-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
7
Fiscal Year
2012
Total Cost
$352,452
Indirect Cost
$102,452
Name
Carnegie-Mellon University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Min, Kyunghun; Ichikawa, Yuichi; Woolford, Carol A et al. (2016) Candida albicans Gene Deletion with a Transient CRISPR-Cas9 System. mSphere 1:
Desai, Jigar V; Cheng, Shaoji; Ying, Tammy et al. (2015) Coordination of Candida albicans Invasion and Infection Functions by Phosphoglycerol Phosphatase Rhr2. Pathogens 4:573-89
Desai, Jigar V; Mitchell, Aaron P (2015) Candida albicans Biofilm Development and Its Genetic Control. Microbiol Spectr 3:
Desai, Jigar V; Mitchell, Aaron P; Andes, David R (2014) Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 4:
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade et al. (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14
Desai, Jigar V; Bruno, Vincent M; Ganguly, Shantanu et al. (2013) Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4:e00637-12
Ganguly, Shantanu; Mitchell, Aaron P (2012) Mini-blaster-mediated targeted gene disruption and marker complementation in Candida albicans. Methods Mol Biol 845:19-39
Taff, Heather T; Nett, Jeniel E; Zarnowski, Robert et al. (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848
Fanning, S; Xu, W; Beaurepaire, C et al. (2012) Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol Microbiol 86:284-302
Fanning, Saranna; Xu, Wenjie; Solis, Norma et al. (2012) Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell 11:896-904

Showing the most recent 10 out of 28 publications