Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is etiologically linked to several human cancers, including AIDS-associated B-cell lymphomas. Previously, we have reported that both EBV-encoded microRNAs (miRNAs) and EBV-induced cellular miRNAs play a critical role in promoting cellular transformation by EBV in culture. Here, we propose an integrated series of experiments designed to lead to a mechanistic understanding of how the miRNAs encoded by, or induced by, EBV infection contribute to the growth and transformation of human cells in culture and in vivo. We will dissect the mechanisms used by EBV-encoded and EBV-induced cellular miRNAs to facilitate the formation of stably immortalized lymphoblastoid cell lines (LCLs) and, more generally, examine how miRNAs contribute to lymphomagenesis and control the decision between viral latency and lytic replication. In addition, we will determine whether specific viral or cellular miRNAs promote the growth and viability of latently EBV-infected diffuse large B cell lymphoma cells (DLBCLs) and nasopharyngeal carcinoma (NPC) cells, in order to ascertain whether EBV uses common mechanisms to transform B lymphocytes and epithelial cells. While one important focus of this grant will be on a cluster of three EBV-encoded miRNAs (miR-BHRF1-1, 1-2 and 1-3) that is expressed at high levels in LCLs and in many DLBCLs, we will also address how the 22-miRNA EBV BART cluster affects the ability of EBV-transformed cells to grow in culture and to avoid immune elimination. Critically, we will integrate miRNA target identification, using a powerful cross-linking and immunoprecipitation (CLIP) technique, with phenotypic studies of miRNA:mRNA interactions to define the mechanisms of action used by these miRNAs to mediate EBV latency and pathogenesis.

Public Health Relevance

Epstein-Barr virus (EBV) is a herpesvirus that is linked to several human diseases, including AIDS- associated B-cell lymphomas and nasopharyngeal carcinomas. We have observed that microRNAs, either those encoded by EBV itself or cellular microRNAs activated upon infection, play an important role in the establishment and/or maintenance of cellular transformation induced by EBV. This grant seeks to understand the mechanisms underlying this process with a view to the development of potential new treatment modalities.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
AIDS-associated Opportunistic Infections and Cancer Study Section (AOIC)
Program Officer
Beisel, Christopher E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Schools of Medicine
United States
Zip Code
Skalsky, Rebecca L; Kang, Dong; Linnstaedt, Sarah D et al. (2014) Evolutionary conservation of primate lymphocryptovirus microRNA targets. J Virol 88:1617-35
Flores, Omar; Kennedy, Edward M; Skalsky, Rebecca L et al. (2014) Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res 42:4629-39
Parnas, Oren; Corcoran, David L; Cullen, Bryan R (2014) Analysis of the mRNA targetome of microRNAs expressed by Marek's disease virus. MBio 5:e01060-13
Wahl, Angela; Linnstaedt, Sarah D; Esoda, Caitlin et al. (2013) A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87:5437-46
Majoros, William H; Lekprasert, Parawee; Mukherjee, Neelanjan et al. (2013) MicroRNA target site identification by integrating sequence and binding information. Nat Methods 10:630-3
Jin, Hyun Yong; Oda, Hiroyo; Lai, Maoyi et al. (2013) MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 32:2377-91
Cullen, Bryan R (2013) MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 14:205-10
Skalsky, Rebecca L; Corcoran, David L; Gottwein, Eva et al. (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8:e1002484
Feederle, Regina; Linnstaedt, Sarah D; Bannert, Helmut et al. (2011) A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7:e1001294
Feederle, Regina; Haar, Janina; Bernhardt, Katharina et al. (2011) The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol 85:9801-10

Showing the most recent 10 out of 29 publications