(provided by The long term goal of this research proposal is to determine the mechanisms by which different signal transduction pathways lead to Interferon (IFN) induction in response to infections with DNA and RNA viruses. To combat viral infections most nucleated vertebrate cells are able to produce cytokines known as type I IFNs, which signal through the type I IFN receptor (IFNAR1), leading to activation of the JAK/STAT pathway and subsequent induction of a large set of genes important in antiviral responses. On the other hand, as a result of co-evolution, many viruses have developed strategies to inhibit the ability of host cells to either produce or respond to IFN. To understand how this network of host/pathogen interactions leads to disease, we need to define specific IFN induction pathways. Together with other groups, we have previously demonstrated that Toll-Like Receptors (TLRs) can mediate IFN production and antiviral responses through activation of IFN regulatory factors IRF3 and IRF7. Recent studies have also uncovered RIG-I like receptor (RLR) family members as intracellular nucleic acid sensors that can detect viral RNA sequences;however, the receptors responsible for recognizing intracellular viral DNA still remain to be determined. Research in our laboratory has been focused on identifying the intermediate signaling components and pathways that link different pattern recognition receptors, like TLRs and RLRs, to the common IRF3/7-dependent IFN induction in host innate immune responses against viral infections. Surprisingly, we have found that while TNF receptor associated factor 3 (TRAF3) deficient cells are defective in IFN induction in response to RNA viral infections, they produce elevated levels of IFN in response to DNA viral infections. The goal of this application is to gain a functional and mechanistic understanding of critical signaling molecules such as TRAF3 in host biodefense against DNA and RNA viral infections. We propose experiments to understand how TRAF3 has opposite functions in regulating RNA versus DNA induced type I interferon inductions. We will determine the mechanism responsible for and potential application of enhancing interferon production against DNA viral infection by activation of the non-canonical NF-kB activation pathway. We will also define the role and specificity of a new RIG-I like DEAD box containing DNA sensor and dissect its mediated type I interferon induction pathway in host response to DNA viruses.

Public Health Relevance

The long term goal of this research proposal is to determine the mechanisms for diseases associated with viral infections and our host defense against viral infections. This proposal is focused on a particular molecule that can play an opposite role in regulating host immune response to DNA and RNA viruses. We will also develop novel therapeutic agents to treat disease models associated with DNA virus infections such as genital herpes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI069120-09
Application #
8636981
Study Section
Innate Immunity and Inflammation Study Section (III)
Program Officer
Palker, Thomas J
Project Start
2006-04-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
9
Fiscal Year
2014
Total Cost
$378,400
Indirect Cost
$128,400
Name
University of California Los Angeles
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Foo, Suan-Sin; Chen, Weiqiang; Chan, Yen et al. (2018) Biomarkers and immunoprofiles associated with fetal abnormalities of ZIKV-positive pregnancies. JCI Insight 3:
Zhu, Xingliang; Li, Chunfeng; Afridi, Shabbir Khan et al. (2018) E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathol Commun 6:77
Parvatiyar, Kislay; Pindado, Jose; Dev, Anurupa et al. (2018) A TRAF3-NIK module differentially regulates DNA vs RNA pathways in innate immune signaling. Nat Commun 9:2770
Li, Chunfeng; Deng, Yong-Qiang; Wang, Shuo et al. (2017) 25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model. Immunity 46:446-456
Watanabe, Momoko; Buth, Jessie E; Vishlaghi, Neda et al. (2017) Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Rep 21:517-532
Quanquin, Natalie; Wang, Lulan; Cheng, Genhong (2017) Potential for treatment and a Zika virus vaccine. Curr Opin Pediatr 29:114-121
Li, Chunfeng; Zhu, Xingliang; Ji, Xue et al. (2017) Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice. EBioMedicine 24:189-194
Wang, Lulan; Valderramos, Stephanie G; Wu, Aiping et al. (2016) From Mosquitos to Humans: Genetic Evolution of Zika Virus. Cell Host Microbe 19:561-5
Boxx, Gayle M; Cheng, Genhong (2016) The Roles of Type I Interferon in Bacterial Infection. Cell Host Microbe 19:760-9
Wang, Lulan; Wu, Aiping; Wang, Yao E et al. (2016) Functional Genomics Reveals Linkers Critical for Influenza Virus Polymerase. J Virol 90:2938-47

Showing the most recent 10 out of 58 publications