Malaria continues to be a major world health problem, killing1-2 million people annually. The Plasmodium parasites that cause malaria have a multistage life cycle, which contributes to their ability to evade host immune responses. For malaria transmission, the parasite must undergo sexual differentiation into mature gametocytes that, when taken up in a blood meal by a mosquito can fertilize and begin sporogonic development. The molecular basis for the critical switch from asexual replication to sexual differentiation in the parasite's life cycle is unknown. Our hypothesis is that this transition is initiated by the activation of transcription factors that regulate the expression of genes required to effect gametocytogenesis. Once the regulatory factors are identified, inhibitors could be designed to block gametocytogenesis, which would prevent malaria transmission. To identify the genes involved, Plasmodium falciparum gametocyte producing (G+) and non-producing (G-) parasite lines were derived from strain 3D7 parasites. The first Specific Aim will be to use whole genome microarray analysis to compare mRNA harvested from the G+ and G- clones during the asexual to sexual transition. This comparison should identify the earliest differentially expressed genes.
Specific Aim 2 will be to analyze the factors involved in regulating the gametocyte-specific expression of these genes. The ability of the 5'and 3'flanking regions of the genes to drive stage-specific reporter gene expression will be tested and the specific regulatory regions required will be identified by promoter mapping supplemented with motif analysis.
Specific Aim 3 will be to identify the genes required for the induction of gametocytogenesis by determining the genetic differences between the G+ and G- parasite lines, as well as the genes that interact with the regulatory regions identified in Specific Aim 2. The relationship between gametocytogenesis and the genetic differences found will be further analyzed by complementation of the G- line and targeted gene disruption of wild type G+ parasites. This information should provide new gene candidates that could be used in the future to design new strategies to control malaria transmission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI069314-04
Application #
7879370
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
2007-06-01
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
4
Fiscal Year
2010
Total Cost
$272,904
Indirect Cost
Name
Loyola University Chicago
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
074368911
City
Chicago
State
IL
Country
United States
Zip Code
60660
Williamson, Kim C; Levine, Rodney L; Miller, Louis H (2018) Even malaria parasites watch their host's diet. Nat Microbiol 3:130-131
Ayanful-Torgby, Ruth; Quashie, Neils B; Boampong, Johnson N et al. (2018) Seasonal variations in Plasmodium falciparum parasite prevalence assessed by varying diagnostic tests in asymptomatic children in southern Ghana. PLoS One 13:e0199172
Josling, Gabrielle A; Williamson, Kim C; LlinĂ¡s, Manuel (2018) Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu Rev Microbiol 72:501-519
Amoah, L E; Nuvor, S V; Obboh, E K et al. (2017) Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana. Parasit Vectors 10:395
Acquah, Festus K; Obboh, Evans K; Asare, Kwame et al. (2017) Antibody responses to two new Lactococcus lactis-produced recombinant Pfs48/45 and Pfs230 proteins increase with age in malaria patients living in the Central Region of Ghana. Malar J 16:306
Ayanful-Torgby, Ruth; Oppong, Akua; Abankwa, Joana et al. (2016) Plasmodium falciparum genotype and gametocyte prevalence in children with uncomplicated malaria in coastal Ghana. Malar J 15:592
Panackal, Anil A; Williamson, Kim C; van de Beek, Diederik et al. (2016) Fighting the Monster: Applying the Host Damage Framework to Human Central Nervous System Infections. MBio 7:e01906-15
Simon, Nina; Kuehn, Andrea; Williamson, Kim C et al. (2016) Adhesion protein complexes of malaria gametocytes assemble following parasite transmission to the mosquito. Parasitol Int 65:27-30
Skinner, Jeff; Huang, Chiung-Yu; Waisberg, Michael et al. (2015) Plasmodium falciparum Gametocyte-Specific Antibody Profiling Reveals Boosting through Natural Infection and Identifies Potential Markers of Gametocyte Exposure. Infect Immun 83:4229-36
Joice, Regina; Nilsson, Sandra K; Montgomery, Jacqui et al. (2014) Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci Transl Med 6:244re5

Showing the most recent 10 out of 21 publications