Interferon (IFN) and IFN-stimulated gene products (ISGs) are essential components of the innate immune response to viral infection. Conversely, viruses need to limit the induction or function of ISGs for successful infection of their respective host. One of the most highly prevalent human pathogens is the beta-herpesvirus human cytomegalovirus (HCMV), yet it is not clear how HCMV activates and modulates the IFN response. The goal of this application is therefore to identify and characterize cellular activators and viral modulators of this innate immune response to HCMV. We have shown that the activation of interferon-regulatory factor 3 (IRF3) is essential for HCMV-induced IFN and ISG induction. However, we also observed that virion proteins of the non-human primate virus rhesus CMV (RhCMV) prevent IRF3 activation by HCMV. Two proteins of the RhCMV tegument, pp65a and pp71 inhibit IRF3-dependent ISG induction. Unexpectedly, pp71 (UL82) of HCMV also inhibited IRF3-dependent ISG transcription. Interestingly, human fibroblasts stably transfected with pp72 (UL82-HF) were completely refractory to IRF3 activation by HCMV, but not by Vesicular Stomatitis Virus or poly-IC. In addition, double stranded, interferon-stimulatory DNA (ISD) failed to activate IRF3 in UL82-HF. ISD-dependent IRF3 activation is a recently described novel innate immune response pathway that is independent of toll-like receptors or the dsRNA-sensors RIG-I and MDA-5. Therefore, we hypothesize that HCMV and ISD share a common IRF3-activating signal transduction pathway that is modulated by CMV tegument proteins. To test this hypothesis we plan to identify host cell factors required for HCMV and/or ISD- dependent IRF3 activation. This will be achieved in a high-throughput screen of small intefering RNAs targeting approximately 17,000 known and unknown genes. We will further identify the mechanism of viral IRF3-inhibtion by identifying the step within the signal transduction cascade that is targeted by tegument proteins of RhCMV and HCMV. Finally, we will characterize the role of viral tegument proteins in modulating IRF3 activation during viral infection. Ultimately, these in vitro results will allow us to test the importance of modulating the innate immune response in an emerging animal model for HCMV.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI070890-05
Application #
8197176
Study Section
Virology - B Study Section (VIRB)
Program Officer
Beisel, Christopher E
Project Start
2007-12-15
Project End
2012-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
5
Fiscal Year
2012
Total Cost
$377,339
Indirect Cost
$132,314
Name
Oregon Health and Science University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Malouli, Daniel; Hansen, Scott G; Nakayasu, Ernesto S et al. (2014) Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 124:1928-44
Amsler, Lisi; Verweij, Marieke C; DeFilippis, Victor R (2013) The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus. J Mol Biol 425:4857-71
DeFilippis, Victor R; Alvarado, David; Sali, Tina et al. (2010) Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J Virol 84:585-98
Viswanathan, Kasinath; Fruh, Klaus; DeFilippis, Victor (2010) Viral hijacking of the host ubiquitin system to evade interferon responses. Curr Opin Microbiol 13:517-23
DeFilippis, Victor R; Sali, Tina; Alvarado, David et al. (2010) Activation of the interferon response by human cytomegalovirus occurs via cytoplasmic double-stranded DNA but not glycoprotein B. J Virol 84:8913-25
Vomaske, Jennifer; Melnychuk, Ryan M; Smith, Patricia P et al. (2009) Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility. PLoS Pathog 5:e1000304
Powers, C; DeFilippis, V; Malouli, D et al. (2008) Cytomegalovirus immune evasion. Curr Top Microbiol Immunol 325:333-59
Streblow, D N; Kreklywich, C N; Andoh, T et al. (2008) The role of angiogenic and wound repair factors during CMV-accelerated transplant vascular sclerosis in rat cardiac transplants. Am J Transplant 8:277-87
Powers, Colin; Fruh, Klaus (2008) Rhesus CMV: an emerging animal model for human CMV. Med Microbiol Immunol 197:109-15