Accumulating evidence suggests that dysregulation of marginal zone macrophages (MZMs) of the spleen plays a role in the development of systemic autoimmune disease include systemic lupus erythematosus (SLE). The MZMs play an important role in trapping, processing, and inducing tolerance to apoptotic cell (AC) antigens. The molecular mechanisms underlying dysregulation of tolerogenic MZM responses in lupus and the signals that trigger this dysregulation have not been elucidated. The proposed studies test the hypotheses that: (1) A common mechanism underlying dysregulation of tolerogenic MZM responses in lupus is an alteration in the expression of a mechanosensing protein megakaryocytic leukemia-1 (MKL1) and associated filamentous actin assembly in MZMs that affects the ability of the MZMs to take up and maintain tolerance to apoptotic cell antigens (AC-Ags); (2) Alterations in expression of MKL1 and disruption of F-actin assembly can be induced by events that are characteristic of SLE. They can be induced by loss of signaling through the lymphotoxin- receptor (LTR) on the MZMs resulting from type I interferon (IFN) induced mislocalization of MZ B cells, which express membrane lymphotoxin (mLT), from the MZ to the follicle. Notably, the interferon signature is a hallmark of SLE in humans and deficiency of Type 1 IFN signals in BXD2- Ifnr-/- mice abrogates many of the abnormal immunologic MZM phenotypes as well as the production of autoantibodies and symptomatic lupus in these mice. The alterations in MKL1 and actin assembly also can be induced by chronic exposure to AC debris and immune complexes (ICs) through mechanosensing. These hypotheses will be tested using multiple mouse models with targeted disruption of pertinent pathways made available through extensive collaborations, pharmacological disruption, and state-of-the-art confocal microscopic analysis.
Aim 1 will determine if IFN- induced follicular translocation of mLT+ MZ B cells leads to loss of MZM tolerance of ACs and ICs. In addition, BXD2 and B6.TC autoimmune mice will be used to determine if an MZM defect is a primary, early defect in lupus.
Aim 2 will focus on the LT R downstream signaling of MKL1 pathway and test in vivo and in vitro if the LTR/MLK1/actin polymerization pathways play a role in maintenance of the survival of tolerogenic MZMs. Frozen sections from SLE and normal human spleen will be used to determine if loss of MARCO+ MZMs in the SLE spleen is associated with high numbers of type 1-IFN producing pDCs, follicular translocation of LT+ B cells, and dysregulation of MKL1/actin polymerization. Clinical Relevance. The studies will provide a unified model of lupus, indicate a critical novel pathogenic mechanism of type I IFNs, and identify a new molecular pathway underlying regulation of tolerogenic macrophages in SLE thereby suggesting novel candidate therapeutic targets.

Public Health Relevance

The proposed studies test a novel hypothetical mechanism underlying the maintenance of tolerogenic spleen marginal zone macrophages (MZMs) and the role of dysregulation of this mechanism in lupus. Several mouse models with targeted disruption of the components of the pathway made available through extensive collaborations and state-of-the-art confocal imaging will be used to determine: (1) If dysregulation of this mechanism underlies loss of the ability of MZMs to clear circulating apoptotic cells and maintain tolerance t autoantigens and if this is a common feature in the spleens of patients with SLE and lupus-prone mice; and (2) If dysregulation of this mechanisms can be triggered by type I interferon-induced loss of B cell interactions with the MZMs on mechanosensing of chronic exposure to dead cells. The results will pinpoint molecules that play a primary role in orchestrating autoimmune responses and are candidate therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI071110-08
Application #
8997962
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Johnson, David R
Project Start
2006-07-01
Project End
2019-01-31
Budget Start
2016-02-01
Budget End
2017-01-31
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2018) Cutting Edge: Intracellular IFN-? and Distinct Type I IFN Expression Patterns in Circulating Systemic Lupus Erythematosus B Cells. J Immunol 201:2203-2208
Mountz, John D (2018) Editorial: STATus of STAT3 in Psoriatic Arthritis. Arthritis Rheumatol 70:801-804
Hamilton, Jennie A; Wu, Qi; Yang, PingAr et al. (2017) Cutting Edge: Endogenous IFN-? Regulates Survival and Development of Transitional B Cells. J Immunol 199:2618-2623
Hamilton, Jennie A; Li, Jun; Wu, Qi et al. (2015) General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. J Immunol 194:5022-34
Ding, Yanna; Mountz, John D; Hsu, Hui-Chen (2015) Identification of follicular T helper cells in tissue sections. Methods Mol Biol 1291:13-25
Li, Hao; Fu, Yang-Xin; Wu, Qi et al. (2015) Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus. J Clin Invest 125:2877-90
Sang, Allison; Zheng, Ying-Yi; Yin, Yiming et al. (2014) Dysregulated cytokine production by dendritic cells modulates B cell responses in the NZM2410 mouse model of lupus. PLoS One 9:e102151
Ding, Yanna; Li, Jun; Yang, PingAr et al. (2014) Interleukin-21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice. Arthritis Rheumatol 66:2601-12
Li, Jun; Hsu, Hui-Chen; Ding, Yana et al. (2014) Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 66:2368-79
Li, Hao; Hsu, Hui-Chen; Wu, Qi et al. (2014) IL-23 promotes TCR-mediated negative selection of thymocytes through the upregulation of IL-23 receptor and ROR?t. Nat Commun 5:4259

Showing the most recent 10 out of 25 publications