This proposal seeks to develop an effective and safe pre-clinical model for gene therapy in Wiskott- Aldrich Syndrome (WAS). While transplantation using HLA-matched bone marrow can be curative for young WAS patients, the success rate falls precipitously with increasing age. Multiple lines of evidence document a strong selective advantage for WASP expressing hematopoeitic cell subsets suggesting that introduction of the normal WASP gene into hematopoietic stem cells (HSC) could provide a viable therapeutic alternative in disease management. While conceptually simple, development of a safe and effective strategy for WASP gene replacement requires extensive pre-clinical modeling in human and animal systems. This proposal takes advantage of combined expertise, and a network of important research and clinical collaborators, to establish a lentiviral delivery system for the definitive genetic treatment of WAS. We will test the hypotheses that: 1) WASP activity is crucial for both the generation of marginal zone (MZ) B cells and homeostasis of functional T-regulatory cells (TR);and that these observations help to explain the susceptibility to infection with encapsulated bacteria, and the high-incidence of autoimmunity in WAS patients, respectively. Further, we predict that LV gene therapy will rescue these key defects. 2) Lentiviral vectors containing a pan-hematopoeitic or selected lymphoid restricted promoters will lead to functional correction of lymphoid development, activation, and survival;platelet turnover;and immune function in vivo in an animal model of WAS. 3) Analysis of viral marking and expression in a non-human primate model will allow us to define the optimal vector for use in human clinical trials;and provide key data with regard to any potential toxicity of this vector and/or dysregulated WASP expression within HSC and their progeny. Our proposed studies will provide nearly all of the key expression, efficacy, and safety data required to move forward with a human gene therapy trial for WAS;and have a very high likelihood for translation into new therapies.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GTIE-A (01))
Program Officer
Johnson, David R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Seattle Children's Hospital
United States
Zip Code
Jackson, Shaun W; Scharping, Nicole E; Kolhatkar, Nikita S et al. (2014) Opposing impact of B cell-intrinsic TLR7 and TLR9 signals on autoantibody repertoire and systemic inflammation. J Immunol 192:4525-32
Wang, Yupeng; Khan, Iram F; Boissel, Sandrine et al. (2014) Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus. Nucleic Acids Res 42:6463-75
Wang, Cathy X; Sather, Blythe D; Wang, Xuefeng et al. (2014) Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood 124:913-23
Schwartz, Marc A; Kolhatkar, Nikita S; Thouvenel, Chris et al. (2014) CD4+ T cells and CD40 participate in selection and homeostasis of peripheral B cells. J Immunol 193:3492-502
Bermejo, Daniela A; Jackson, Shaun W; Gorosito-Serran, Melisa et al. (2013) Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors ROR?t and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14:514-22
Chen, Yolande; Aardema, Jorie; Kale, Sayali et al. (2013) Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 122:1695-706
Strom, Ted S (2013) A numerical analysis model for the interpretation of in vivo platelet consumption data. PLoS One 8:e55087
Prislovsky, Amanda; Strom, Ted S (2013) Increased uptake by splenic red pulp macrophages contributes to rapid platelet turnover in WASP(-) mice. Exp Hematol 41:789-98
Allen, Jessica L; Flick, Leah M; Divanovic, Senad et al. (2012) Cutting edge: regulation of TLR4-driven B cell proliferation by RP105 is not B cell autonomous. J Immunol 188:2065-9
Astrakhan, Alexander; Sather, Blythe D; Ryu, Byoung Y et al. (2012) Ubiquitous high-level gene expression in hematopoietic lineages provides effective lentiviral gene therapy of murine Wiskott-Aldrich syndrome. Blood 119:4395-407

Showing the most recent 10 out of 14 publications