The overall goal of this proposal is to understand how mammalian cells detect and respond to the presence of intracellular bacterial pathogens. Despite antibiotics, bacterial infections continue to present a significant public health challenge. Our studies utilize the gram-negative bacterium Legionella pneumophila, the causative agent of a severe pneumonia called Legionnaires'Disease, as a model for understanding how bacterial pathogens interact with macrophages. The virulence of Legionella depends on its ability to survive and grow within macrophages. Previous work has established that two genes (Naip5 and Ipaf) are instrumental in orchestrating cellular defenses that protect macrophages from Legionella infection, but the molecular mechanism by which Naip5/Ipaf confer resistance to Legionella has remained largely mysterious. Naip5 and Ipaf exhibit homology to a large family of cytosolic pathogen- detector proteins called the Nod-like proteins. Our preliminary results suggest that resistance to Legionella depends on rapid triggering of a Naip5/Ipaf-containing inflammasome that occurs upon the detection of bacterial flagellin in the macrophage cytosol. Inflammasome activation is connected to a variety of human diseases, and thus use of Legionella as a model for understanding inflammasome activation will have broad implications for our understanding of human health and disease. We have also made the unexpected observation that Naip/Ipaf are not sufficient to protect macrophages from Legionella, and that in addition, signaling via the tumor necrosis factor receptor is also required. TNF is already an important therapeutic target in the clinical treatment of diseases such as arthritis and Crohn's Disease. Thus, a deeper understanding of the molecular basis by which Naip/Ipaf and TNF collaborate to restrict Legionella growth could possibly be of great relevance to human health and disease. Thus, the specific aims of this grant proposal are: 1. Test the hypothesis that the intracellular presence of bacterial flagellin protein is sufficient to trigger the Ipaf/Naip5-dependent signaling pathways that restrict bacterial growth;map the determinants within flagellin required to trigger Ipaf/Naip5;and using this information, test the hypothesis that flagellin physically interacts with Naip5 and/or Ipaf. 2. Test the hypothesis that Naip5 is critical for macrophage resistance to Legionella by targeted deletion of Naip5 in mice. 3. Test the hypothesis that Naip5/Ipaf signaling protects macrophages by synergizing with TNF signaling.

Public Health Relevance

It is anticipated that results obtained from the above work will permit a deeper understanding of how bacteria cause disease and of what factors lead to successful immune responses to these bacteria. Such knowledge should contribute to rational approaches to designing novel antibacterial therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI075039-05
Application #
8286227
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Korpela, Jukka K
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$322,325
Indirect Cost
$101,802
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E (2017) Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen. Elife 6:
Tenthorey, Jeannette L; Haloupek, Nicole; López-Blanco, José Ramón et al. (2017) The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 358:888-893
DiPeso, Lucian; Ji, Daisy X; Vance, Russell E et al. (2017) Cell death and cell lysis are separable events during pyroptosis. Cell Death Discov 3:17070
Rauch, Isabella; Deets, Katherine A; Ji, Daisy X et al. (2017) NAIP-NLRC4 Inflammasomes Coordinate Intestinal Epithelial Cell Expulsion with Eicosanoid and IL-18 Release via Activation of Caspase-1 and -8. Immunity 46:649-659
De Leon, Justin A; Qiu, Jiazhang; Nicolai, Christopher J et al. (2017) Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep 21:2031-2038
Rauch, Isabella; Tenthorey, Jeannette L; Nichols, Randilea D et al. (2016) NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med 213:657-65
Chavarría-Smith, Joseph; Mitchell, Patrick S; Ho, Alvin M et al. (2016) Functional and Evolutionary Analyses Identify Proteolysis as a General Mechanism for NLRP1 Inflammasome Activation. PLoS Pathog 12:e1006052
Vance, Russell E (2015) The NAIP/NLRC4 inflammasomes. Curr Opin Immunol 32:84-9
Tenthorey, Jeannette L; Kofoed, Eric M; Daugherty, Matthew D et al. (2014) Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54:17-29
von Moltke, Jakob; Ayres, Janelle S; Kofoed, Eric M et al. (2013) Recognition of bacteria by inflammasomes. Annu Rev Immunol 31:73-106

Showing the most recent 10 out of 31 publications