P. aeruginosa strains differ from one to another in their ability to cause severe disease, in both animals and plants. Since about 90% of P. aeruginosa ORFs, including a large number that encode virulence factors, make up a core set of genes that are conserved throughout all strains, it is likely that a proportion of the phenotypic heterogeneity of P. aeruginosa is attributable to large strain-specific genomic islands that were acquired through horizontal transfer. These genomic islands represent a wealth of genetic information that remains relatively unexplored. Although some genomic islands have been associated with virulence in various models (and therefore are classified as pathogenicity islands), the full impact of variable genomic islands on the virulence of P. aeruginosa has yet to be examined. We hypothesize that genomic islands present in some strains but absent in others account for some of the heterogeneity in virulence of P. aeruginosa strains and that characterization of these genomic islands will result in the identification of novel virulence determinants. The goals of this proposal are two-fold: first, a substantial number of novel genomic islands will be identified and characterized, adding to the database of genetic information known to be carried by this bacterium and furthering our understanding of the evolution of these genetic elements. Second, genomic islands that contribute to the overall virulence of P. aeruginosa will be identified, as will their individual ORFs that account for this phenotype. The general strategy of this proposal is to exploit the differences in virulence between P. aeruginosa strains to identify strains with a high likelihood of containing large amounts of variable genetic information in the form of novel genomic islands. These strains will be targeted for in-depth analysis. Genomic islands in these strains will be sequenced, and those that contribute to virulence will be identified. Finally, mutational analyses will be performed to identify the ORFs harbored by these islands that are responsible for the enhanced virulence. Successful completion of this proposal will yield a wealth of information regarding the content and characteristics of P. aeruginosa genomic islands and will identify novel virulence factors. Clinically, the identification of genomic islands that impact the disease-causing potential of P. aeruginosa strains is of potential prognostic and therapeutic importance.

Public Health Relevance

The bacterium Pseudomonas aeruginosa is one of the most frequent causes of pneumonia acquired in the hospital, a disease that has a mortality rate of 30-60%. Our overall objective is to better understand why some strains of P. aeruginosa cause more severe disease than other strains. This information could lead to prognostic, diagnostic, and therapeutic advances.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI075191-05
Application #
8386918
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Taylor, Christopher E,
Project Start
2008-12-22
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2014-11-30
Support Year
5
Fiscal Year
2013
Total Cost
$316,120
Indirect Cost
$108,828
Name
Northwestern University at Chicago
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Fitzpatrick, Margaret A; Ozer, Egon; Bolon, Maureen K et al. (2015) Influence of ACB complex genospecies on clinical outcomes in a U.S. hospital with high rates of multidrug resistance. J Infect 70:144-52
Ozer, Egon A; Allen, Jonathan P; Hauser, Alan R (2014) Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 15:737
Rangel, Stephanie M; Logan, Latania K; Hauser, Alan R (2014) The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. MBio 5:e01080-14
Hauser, Alan R (2014) Pseudomonas aeruginosa virulence and antimicrobial resistance: two sides of the same coin? Crit Care Med 42:201-2
Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik et al. (2014) The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier. PLoS Pathog 10:e1004479
Chuang, Chih-Hsien; Wang, Yi-Hsin; Chang, Hsin-Ju et al. (2014) Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut 63:736-43
Bowlin, Nicholas O; Williams, John D; Knoten, Claire A et al. (2014) Mutations in the Pseudomonas aeruginosa needle protein gene pscF confer resistance to phenoxyacetamide inhibitors of the type III secretion system. Antimicrob Agents Chemother 58:2211-20
Ozer, Egon A; Fitzpatrick, Margaret A; Hauser, Alan R (2014) Draft Genome Sequence of Acinetobacter baumannii Strain ABBL099, a Multidrug-Resistant Clinical Outbreak Isolate with a Novel Multilocus Sequence Type. Genome Announc 2:
Allen, Jonathan P; Ozer, Egon A; Hauser, Alan R (2014) Different paths to pathogenesis. Trends Microbiol 22:168-9
Wang, Nengding; Ozer, Egon A; Mandel, Mark J et al. (2014) Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. MBio 5:e01163-14

Showing the most recent 10 out of 22 publications