Principal Investigator/Program Director (Last, first, middle): Woodland, David, L. RESEARCH &RELATED Other Project Information 1. * Are Human Subjects Involved? m Yes l No 1.a. If YES to Human Subjects Is the IRB review Pending? m Yes m No IRB Approval Date: Exemption Number: 1 2 3 4 5 6 Human Subject Assurance Number 2. * Are Vertebrate Animals Used? l Yes m No 2.a. If YES to Vertebrate Animals Is the IACUC review Pending? m Yes l No IACUC Approval Date: 11-03-2006 Animal Welfare Assurance Number A3075-01 3. * Is proprietary/privileged information m Yes l No included in the application? 4.a.* Does this project have an actual or potential impact on m Yes l No the environment? 4.b. If yes, please explain: 4.c. If this project has an actual or potential impact on the environment, has an exemption been authorized or an environmental assessment (EA) or environmental impact statement (EIS) been performed? m Yes m No 4.d. If yes, please explain: 5.a.* Does this project involve activities outside the U.S. or m Yes l No partnership with International Collaborators? 5.b. If yes, identify countries: 5.c. Optional Explanation: 6. * Project Summary/Abstract 7113-Abstract_Summary.pdf Mime Type: application/pdf 7. * Project Narrative 9971-Abstract_Relevance.pdf Mime Type: application/pdf 8. Bibliography &References Cited 9195-Literature_cited.pdf Mime Type: application/pdf 9. Facilities &Other Resources 311-Resource_page.pdf Mime Type: application/pdf 10. Equipment 9078-MAJOR_EQUIPMENT.pdf Mime Type: application/pdf Tracking Number: Other Information Page 5 OMB Number: 4040-0001 Expiration Date: 04/30/2008 Principal Investigator/Program Director (Last, first, middle): Woodland, David, L. Project Summary: The lung is a major portal of entry for many devastating human pathogens including respiratory viruses, such as the SARS corona virus and avian influenza viruses. Therefore, it is critical to develop vaccines that specifically induce long-lasting protective immunity in the respiratory tract. However, a significant hurdle in the development of pulmonary vaccines is our poor understanding of cell-mediated immunity in the lung. To fill this gap in our knowledge, we have undertaken a detailed analysis of the recall response to respiratory virus infections in the mouse model. Our data demonstrate that distinct subpopulations of memory CD8+ T cells contribute to the early and late stages of the recall response in the lung. The early phase of the recall response is mediated by non-proliferating memory CD8+ T cells that are rapidly recruited to the lung airways by inflammatory signals during the first few days of infection. These cells play a

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
3R01AI076499-03S1
Application #
8070124
Study Section
Immunity and Host Defense Study Section (IHD)
Program Officer
Lapham, Cheryl K
Project Start
2010-06-01
Project End
2010-08-31
Budget Start
2010-06-01
Budget End
2010-08-31
Support Year
3
Fiscal Year
2010
Total Cost
$10,340
Indirect Cost
Name
Trudeau Institute, Inc.
Department
Type
DUNS #
020658969
City
Saranac Lake
State
NY
Country
United States
Zip Code
12983
Brincks, Erik L; Roberts, Alan D; Cookenham, Tres et al. (2013) Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J Immunol 190:3438-46
Rudraraju, Rajeev; Surman, Sherri L; Jones, Bart G et al. (2012) Reduced frequencies and heightened CD103 expression among virus-induced CD8(+) T cells in the respiratory tract airways of vitamin A-deficient mice. Clin Vaccine Immunol 19:757-65
Haynes, Laura; Szaba, Frank M; Eaton, Sheri M et al. (2012) Immunity to the conserved influenza nucleoprotein reduces susceptibility to secondary bacterial infections. J Immunol 189:4921-9
Perona-Wright, Georgia; Kohlmeier, Jacob E; Bassity, Elizabeth et al. (2012) Persistent loss of IL-27 responsiveness in CD8+ memory T cells abrogates IL-10 expression in a recall response. Proc Natl Acad Sci U S A 109:18535-40
Kohlmeier, Jacob E; Reiley, William W; Perona-Wright, Georgia et al. (2011) Inflammatory chemokine receptors regulate CD8(+) T cell contraction and memory generation following infection. J Exp Med 208:1621-34
Sandau, Michelle M; Kohlmeier, Jacob E; Woodland, David L et al. (2010) IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. J Immunol 184:35-44
Kohlmeier, Jacob E; Connor, Lisa M; Roberts, Alan D et al. (2010) Nonmalignant clonal expansions of memory CD8+ T cells that arise with age vary in their capacity to mount recall responses to infection. J Immunol 185:3456-62
Kohlmeier, Jacob E; Cookenham, Tres; Roberts, Alan D et al. (2010) Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33:96-105
Takamura, Shiki; Roberts, Alan D; Jelley-Gibbs, Dawn M et al. (2010) The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen. J Exp Med 207:1153-60
Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C et al. (2009) CXCR3 directs antigen-specific effector CD4+ T cell migration to the lung during parainfluenza virus infection. J Immunol 183:4378-84

Showing the most recent 10 out of 12 publications