Access to potent antiretroviral drugs markedly reduces acquired immunodeficiency syndrome (AIDS) morbidity and mortality. However, there is considerable interindividual variability in response to human immunodeficiency virus type 1 (HIV-1) therapy regarding both efficacy and toxicity. Variable responses to medications are influenced, at least in part, by frequent human genetic variants that affect drug metabolism and drug disposition. Because suboptimal response can have devastating consequences for individuals and populations, defining the predictive value of human genetics for HIV treatment response has far-reaching implications. The pace of genomic discovery relevant to HIV therapeutics has been relatively slow and fragmented. Efficiently moving HIV pharmacogenomics from bench to bedside to community will be greatly facilitated by an approach that spans antiretroviral drugs and drug classes so that persons affected by HIV worldwide may benefit from the human genomic revolution. The proposed studies will determine the utility of human pharmacogenomic testing for clinical HIV care. The overarching hypothesis is that knowledge of associations between human genetic variants and HIV treatment responses will improve HIV treatment outcomes. This proposal will focus on genes relevant to drug absorption, distribution, metabolism, and elimination (ADME), complemented by selected non-ADME polymorphisms. This will be accomplished through analyses of data and DNA from over 5,000 participants from prospective clinical trials. Predictive models for responses to antiretroviral therapies will be developed based on knowledge of human genetic variants. Results of these analyses may also inform the design of a prospective randomized clinical trial to test whether HIV treatment responses will improve when human genetic testing informs prescribing. This work may ultimately result in better individualized therapy (personalized medicine), and improved antiretroviral treatment guidelines for persons living in resource-limited countries worldwide. To maximize impact and value added, this project will be a platform for collaboration with other investigators. PROJECT NARRATIVE The AIDS pandemic is one of the greatest public health infectious diseases challenges in history. There are approximately 1 million individuals in the US and 40 million worldwide living with HIV/AIDS. Understanding how human genetic differences predict treatment response to HIV medications many help inform public health policy decisions about the safest and most effective use of antiretroviral regimens in the US and worldwide.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-D (03))
Program Officer
Zhang, Hao
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Sinxadi, Phumla Zuleika; McIlleron, Helen Margaret; Dave, Joel Alex et al. (2016) Plasma Efavirenz Concentrations Are Associated With Lipid and Glucose Concentrations. Medicine (Baltimore) 95:e2385
Leger, Paul; Chirwa, Sanika; Turner, Megan et al. (2016) Pharmacogenetics of efavirenz discontinuation for reported central nervous system symptoms appears to differ by race. Pharmacogenet Genomics 26:473-80
Castillo-Mancilla, Jose R; Aquilante, Christina L; Wempe, Michael F et al. (2016) Pharmacogenetics of unboosted atazanavir in HIV-infected individuals in resource-limited settings: a sub-study of the AIDS Clinical Trials Group (ACTG) PEARLS study (NWCS 342). J Antimicrob Chemother 71:1609-18
Gammal, R S; Court, M H; Haidar, C E et al. (2016) Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol Ther 99:363-9
Hoffmann, Christopher J; Cohn, Silvia; Mashabela, Fildah et al. (2016) Treatment Failure, Drug Resistance, and CD4 T-Cell Count Decline Among Postpartum Women on Antiretroviral Therapy in South Africa. J Acquir Immune Defic Syndr 71:31-7
Verma, Shefali S; Frase, Alex T; Verma, Anurag et al. (2016) PHENOME-WIDE INTERACTION STUDY (PheWIS) IN AIDS CLINICAL TRIALS GROUP DATA (ACTG). Pac Symp Biocomput 21:57-68
Schackman, Bruce R; Haas, David W; Park, Sanghee S et al. (2015) Cost-effectiveness of CYP2B6 genotyping to optimize efavirenz dosing in HIV clinical practice. Pharmacogenomics 16:2007-18
Luetkemeyer, Anne F; Rosenkranz, Susan L; Lu, Darlene et al. (2015) Combined effect of CYP2B6 and NAT2 genotype on plasma efavirenz exposure during rifampin-based antituberculosis therapy in the STRIDE study. Clin Infect Dis 60:1860-3
Moore, Carrie B; Verma, Anurag; Pendergrass, Sarah et al. (2015) Phenome-wide Association Study Relating Pretreatment Laboratory Parameters With Human Genetic Variants in AIDS Clinical Trials Group Protocols. Open Forum Infect Dis 2:ofu113
Dooley, Kelly E; Denti, Paolo; Martinson, Neil et al. (2015) Pharmacokinetics of efavirenz and treatment of HIV-1 among pregnant women with and without tuberculosis coinfection. J Infect Dis 211:197-205

Showing the most recent 10 out of 52 publications