An important feature of Pseudomonas aeruginosa pathogenesis is the ability to form surface- associated communities called biofilms. Several types of P. aeruginosa infections are characterized by biofilm formation, including the colonization of indwelling medical devices and the chronic infections present in the airways of people suffering from cystic fibrosis (CF). Biofilm bacteria produce one or more extracellular polymeric substances (EPS) that act as a scaffold, holding biofilm cells together and to a surface. For some time, alginate has been considered the major polysaccharide of the P. aeruginosa EPS biofilm matrix. Recently, our studies indicate that alginate is not a significant component of the EPS matrix of nonmucoid strains, which are responsible for most opportunistic biofilm infections and are also the first to colonize CF patients. Instead, there appear to be other EPS components that mediate biofilm formation. Our lab and others discovered that P. aeruginosa has the capacity to encode two alternative polysaccharides, designated Psl and Pel, which play critical roles in cell surface interactions and biofilm formation. The focus of this proposal is the Pel gene cluster. Our overall objective is to determine the role of Pel in biofilm development, structure, resistance to antimicrobial agents, and pathogenesis. A further understanding of this critical biofilm component will lead to strategies aimed at inhibiting biofilm formation, a key aspect of P. aeruginosa pathogenesis. Despite significant advancements in our knowledge of P. aeruginosa biofilm development, there remain gaps in our understanding of the biofilm matrix composition, as well as the genes responsible for producing this matrix. We have discovered a novel EPS locus that is essential for formation of P. aeruginosa biofilms. Since the matrix provides a critical protective role as well as a scaffold for the developing biofilm, agents aimed at disrupting the matrix would have therapeutic value. A thorough analysis of Pel may lead to the development of such agents and improve the quality of life for C patients as well as individuals with other P. aeruginosa infections that involve biofilms.

Public Health Relevance

is proposal is focused on examining the role of the important biofilm exopolysaccharide Pel in Pseudomonas aeruginosa biofilm formation and pathogenesis. The role of Pel in polysaccharide production, biofilm formation and pathogenesis will be explored.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Taylor, Christopher E,
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Marmont, Lindsey S; Whitfield, Gregory B; Rich, Jacquelyn D et al. (2017) PelA and PelB proteins form a modification and secretion complex essential for Pel polysaccharide-dependent biofilm formation in Pseudomonas aeruginosa. J Biol Chem 292:19411-19422
Passos da Silva, Daniel; Schofield, Melissa C; Parsek, Matthew R et al. (2017) An Update on the Sociomicrobiology of Quorum Sensing in Gram-Negative Biofilm Development. Pathogens 6:
Marmont, Lindsey S; Rich, Jacquelyn D; Whitney, John C et al. (2017) Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 114:2892-2897
Murakami, Keiji; Ono, Tsuneko; Viducic, Darija et al. (2017) Role of psl Genes in Antibiotic Tolerance of Adherent Pseudomonas aeruginosa. Antimicrob Agents Chemother 61:
Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel et al. (2016) Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production. J Bacteriol 198:2643-50
Baker, Perrin; Hill, Preston J; Snarr, Brendan D et al. (2016) Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 2:e1501632
Parsek, Matthew R (2016) Controlling the Connections of Cells to the Biofilm Matrix. J Bacteriol 198:12-4
Hmelo, Laura R; Borlee, Bradley R; Almblad, Henrik et al. (2015) Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc 10:1820-41
Cohen, Dorit; Mechold, Undine; Nevenzal, Hadas et al. (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:11359-64
Park, Jin Hwan; Jo, Youmi; Jang, Song Yee et al. (2015) The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus. PLoS Pathog 11:e1005192

Showing the most recent 10 out of 26 publications