Signals transduced by the B cell receptor (BCR) regulate B cell tolerance to self-antigens by controlling clonal deletion, receptor editing and anergy. BCR signals that mediate B cell tolerance are not fully understood, and altered BCR signaling that elicits the breakdown of B cell tolerance and consequent autoimmune disease is even less well understood. Stimulation of phospholipase Cg (PLCg), a lipid enzyme critical for BCR signaling, generates diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) that activate the PKCb and Ca2+/ calcineurin pathways, respectively. PLCg has two isoforms, PLCg1 and PLCg2. Previously, we reported a key role for the PLCg2-mediated PKCb/Bcl10/TAK1/IKK/NF-kB signaling pathway in B cell maturation and activation, immunoglobulin light chain locus activation, and BCR receptor editing. As PLCg1 deficiency causes early embryonic death, we generated conditional PLCg1 knockout mice, and discovered that B cell-specific deletion of PLCg1 impairs BCR signaling and precludes the maintenance of B cell anergy in these mice. These new data reveal a pivotal yet under-appreciated role for PLCg1 in the establishment of self-tolerance. The clinical relevance of these findings is that PLCg2 mutations alter BCR signaling and elicit immunodeficiency and autoimmune diseases in human patients. Thus, the PLCg pathway plays an essential role in controlling B cell tolerance in both mice and humans. The primary objective of this renewal application is to study the molecular mechanism by which the PLCg-dependent pathway converts a small quantitative change in BCR signaling into qualitative changes in B cells that drives them into a state of anergy. Specifically, we will 1) determine the molecular mechanism by which PLCg1 regulates B cell anergy, and 2) study how a novel molecule controls PLCg and its downstream pathways to regulate B cell anergy. This mechanism-based research will conceptually advance our understanding of the molecular signaling mechanism by which self- antigens regulate B cell anergy. Novel insight into the molecular pathogenesis of human autoimmune disease may identify novel target therapeutics for certain of these diseases.

Public Health Relevance

The regulation of B-cell tolerance, including anergy, is poorly understood. The proposed research seeks to conceptually advance our understanding of the molecular signaling mechanism by which self-antigens regulate B cell anergy during the establishment of self-tolerance. The study will provide new important clues to the molecular pathogenesis of human autoimmune diseases and help identify potential new targets for interventional therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI079087-06
Application #
8825598
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Ferguson, Stacy E
Project Start
2008-06-15
Project End
2019-08-31
Budget Start
2014-09-19
Budget End
2015-08-31
Support Year
6
Fiscal Year
2014
Total Cost
$476,030
Indirect Cost
$190,982
Name
Bloodcenter of Wisconsin, Inc.
Department
Type
DUNS #
057163172
City
Milwaukee
State
WI
Country
United States
Zip Code
53233
Su, Xinlin; Yu, Mei; Qiu, Guixing et al. (2016) Evaluation of nestin or osterix promoter-driven cre/loxp system in studying the biological functions of murine osteoblastic cells. Am J Transl Res 8:1447-59
Chen, Yuhong; Zheng, Yongwei; You, Xiaona et al. (2016) Kras Is Critical for B Cell Lymphopoiesis. J Immunol 196:1678-85
Zheng, Yongwei; Yu, Mei; Padmanabhan, Anand et al. (2015) Critical role of CD4 T cells in PF4/heparin antibody production in mice. Blood 125:1826-9
Xin, Gang; Schauder, David M; Lainez, Begoña et al. (2015) A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control. Cell Rep 13:1118-24
Padmanabhan, Anand; Jones, Curtis G; Bougie, Daniel W et al. (2015) Heparin-independent, PF4-dependent binding of HIT antibodies to platelets: implications for HIT pathogenesis. Blood 125:155-61
Yan, Xiaocai; Yan, Mingfei; Guo, Yihe et al. (2015) R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding. PLoS One 10:e0145218
Zheng, Yongwei; Adams, Tamara; Zhi, Huiying et al. (2015) Restoration of responsiveness of phospholipase Cγ2-deficient platelets by enforced expression of phospholipase Cγ1. PLoS One 10:e0119739
Zheng, Yongwei; Wang, Alexander W; Yu, Mei et al. (2014) B-cell tolerance regulates production of antibodies causing heparin-induced thrombocytopenia. Blood 123:931-4
Zheng, Yongwei; Yu, Mei; Podd, Andrew et al. (2013) Critical role for mouse marginal zone B cells in PF4/heparin antibody production. Blood 121:3484-92
Qi, Xiaopeng; Hong, Jessie; Chaves, Lee et al. (2013) Antagonistic regulation by the transcription factors C/EBPα and MITF specifies basophil and mast cell fates. Immunity 39:97-110

Showing the most recent 10 out of 22 publications