Many viruses evade host defense mechanisms by targeting specific host vulnerabilities, revealing critical points in host pathways regulating antiviral responses. Recent advances in our understanding of how influenza virus escapes host countermeasures have exposed novel mechanisms of virulence that can be exploited pharmacologically. The NS1 protein of influenza virus, a major virulence factor, inhibits host gene expression and signal transduction required to mount innate and adaptive immune responses. In infected cells, NS1 is localized in the nucleus and the cytoplasm. Based on the function of NS1 as inhibitor of gene expression, we performed a high throughput screen (HTS) of 200,000 synthetic chemical compounds and identified novel inhibitors of NS1. We selected eight classes of novel compounds that significantly restored gene expression in the presence of NS1, and that also inhibited both influenza virus replication and host cell death. We propose that antagonists of either nuclear and/or cytoplasmic activities of NS1 will be novel inhibitors of viral replication and pathogenesis. We will combine chemical biology, cell biology, and virology to investigate the mechanisms by which the compounds we have identified inhibit influenza virus replication. We will characterize two families of small molecules that can serve as leads for molecular therapy. In addition, the proposed studies will provide new insights into mechanisms by which influenza virus evades host defense pathways that can be further targeted pharmacologically. We will pursue the following aims:
Aim 1. To investigate structure-activity relationship (SAR) of NS1 inhibitors.
Aim 2. To determine the activity of NS1 inhibitors on Antiviral Responses in vivo.
Aim 3. To identify targeted pathways and mechanisms of action of compounds which inhibit NS1 function. In sum, these studies will likely reveal novel leads for antiviral therapies as well as provide information on novel mechanisms of viral-host interactions and pathways.

Public Health Relevance

Novel therapeutics to prevent viral disease in humans are needed because viruses become resistant to currently used drugs and it is difficult to protect the entire population by vaccination. This project will develop new classes of chemical compounds capable of inhibiting the growth of influenza virus and other viruses to the stage where they can be shown to prevent viral disease in animal models, the first step towards developing leads to new antiviral therapeutics for humans.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Krafft, Amy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Sun, Wei; He, Shihua; Martínez-Romero, Carles et al. (2017) Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res 137:165-172
Zhang, Min; Mishra, Satish; Sakthivel, Ramanavelan et al. (2016) UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages. PLoS Pathog 12:e1005370
Mor, Amir; White, Alexander; Zhang, Ke et al. (2016) Influenza virus mRNA trafficking through host nuclear speckles. Nat Microbiol 1:16069
Moreira, Thais G; Zhang, Liang; Shaulov, Lihi et al. (2015) Sec13 Regulates Expression of Specific Immune Factors Involved in Inflammation In Vivo. Sci Rep 5:17655
Marazzi, Ivan; Garcia-Sastre, Adolfo (2015) Interference of viral effector proteins with chromatin, transcription, and the epigenome. Curr Opin Microbiol 26:123-9
Martínez-Romero, Carles; García-Sastre, Adolfo (2015) Against the clock towards new Ebola virus therapies. Virus Res 209:4-10
Ayllon, Juan; García-Sastre, Adolfo (2015) The NS1 protein: a multitasking virulence factor. Curr Top Microbiol Immunol 386:73-107
Yarbrough, Melanie L; Zhang, Ke; Sakthivel, Ramanavelan et al. (2014) Primate-specific miR-576-3p sets host defense signalling threshold. Nat Commun 5:4963
Yarbrough, Melanie L; Mata, Miguel A; Sakthivel, Ramanavelan et al. (2014) Viral subversion of nucleocytoplasmic trafficking. Traffic 15:127-40
Mor, Amir; White, Michael A; Fontoura, Beatriz M A (2014) Nuclear trafficking in health and disease. Curr Opin Cell Biol 28:28-35

Showing the most recent 10 out of 17 publications