Parasitic nematodes infect over half the world's population, resulting in significant morbidity and mortality. Characterization of nematode genomes provides fundamental molecular information about these parasites accelerating basic research and development of new diagnostics and therapeutics. Washington University's Genome Center has generated and made public over 400,000 cDNAs from 30 parasitic species, sequenced 4 genomes to draft coverage with ten more underway including representatives of the major human parasitic groups. The three aims in this proposal analyze the expanding nematode sequences to substantially improve understanding of parasitic nematode biology and cellular pathways. First, we will develop and use bioinformatic tools to process, assemble, and annotate incoming data from all sequencing platforms. These genomic resources will also be disseminated to the wider research community through the centralized parasitic nematode database, Second, analysis will focus on biochemical pathways conserved and/or taxonomically restricted including proteins that may prove useful as drug targets. Third, we will study the nature and implications of nematode-specific insertions and deletions in proteins involved in environmental information processing and endocrine system. The expected outcome will facilitate and promote the discovery and development of novel interventions to control these important parasites and reduced their associated morbidity and mortality.

Public Health Relevance

The continued development of molecular information, bioinformatics tools, and reagents for the study of parasitic nematodes is crucial, as they infect over half of the world's population and are a leading cause of human morbidity. The main goal of this project is to implement comparative genomics approaches to study the biology and cellular pathways of these important parasites, which on a long run will contribute to improved diagnostics, vaccines, and anthelmintic drugs for broad parasite control.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Joy, Deirdre A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Rosa, Bruce A; McNulty, Samantha N; Mitreva, Makedonka et al. (2017) Direct experimental manipulation of intestinal cells in Ascaris suum, with minor influences on the global transcriptome. Int J Parasitol 47:271-279
McNulty, Samantha N; Tort, Jose F; Rinaldi, Gabriel et al. (2017) Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers. PLoS Genet 13:e1006537
McNulty, Samantha N; Strübe, Christina; Rosa, Bruce A et al. (2016) Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and support future intervention. Sci Rep 6:20316
Wei, Junfei; Damania, Ashish; Gao, Xin et al. (2016) The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasit Vectors 9:518
Wang, Qi; Heizer, Esley; Rosa, Bruce A et al. (2016) Characterization of parasite-specific indels and their proposed relevance for selective anthelminthic drug targeting. Infect Genet Evol 39:201-211
Zarlenga, Dante; Wang, Zhengyuan; Mitreva, Makedonka (2016) Trichinella spiralis: Adaptation and parasitism. Vet Parasitol 231:8-21
Choi, Young-Jun; Tyagi, Rahul; McNulty, Samantha N et al. (2016) Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont. Nat Microbiol 2:16207
Li, Ben-Wen; McNulty, Samantha N; Rosa, Bruce A et al. (2016) Conservation and diversification of the transcriptomes of adult Paragonimus westermani and P. skrjabini. Parasit Vectors 9:497
Martin, John; Rosa, Bruce A; Ozersky, Philip et al. (2015) expansions to and an introduction to Nucleic Acids Res 43:D698-706
Tyagi, Rahul; Joachim, Anja; Ruttkowski, Bärbel et al. (2015) Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnol Adv 33:980-91

Showing the most recent 10 out of 43 publications