Parasitic nematodes infect over half the world's population, resulting in significant morbidity and mortality. Characterization of nematode genomes provides fundamental molecular information about these parasites accelerating basic research and development of new diagnostics and therapeutics. Washington University's Genome Center has generated and made public over 400,000 cDNAs from 30 parasitic species, sequenced 4 genomes to draft coverage with ten more underway including representatives of the major human parasitic groups. The three aims in this proposal analyze the expanding nematode sequences to substantially improve understanding of parasitic nematode biology and cellular pathways. First, we will develop and use bioinformatic tools to process, assemble, and annotate incoming data from all sequencing platforms. These genomic resources will also be disseminated to the wider research community through the centralized parasitic nematode database, Second, analysis will focus on biochemical pathways conserved and/or taxonomically restricted including proteins that may prove useful as drug targets. Third, we will study the nature and implications of nematode-specific insertions and deletions in proteins involved in environmental information processing and endocrine system. The expected outcome will facilitate and promote the discovery and development of novel interventions to control these important parasites and reduced their associated morbidity and mortality.

Public Health Relevance

The continued development of molecular information, bioinformatics tools, and reagents for the study of parasitic nematodes is crucial, as they infect over half of the world's population and are a leading cause of human morbidity. The main goal of this project is to implement comparative genomics approaches to study the biology and cellular pathways of these important parasites, which on a long run will contribute to improved diagnostics, vaccines, and anthelmintic drugs for broad parasite control.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Joy, Deirdre A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Cantacessi, Cinzia; Giacomin, Paul; Croese, John et al. (2014) Impact of experimental hookworm infection on the human gut microbiota. J Infect Dis 210:1431-4
Sotillo, Javier; Sanchez-Flores, Alejandro; Cantacessi, Cinzia et al. (2014) Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Mol Cell Proteomics 13:2736-51
Tang, Yat T; Gao, Xin; Rosa, Bruce A et al. (2014) Genome of the human hookworm Necator americanus. Nat Genet 46:261-9
Rutter, William B; Hewezi, Tarek; Abubucker, Sahar et al. (2014) Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita. Mol Plant Microbe Interact 27:965-74
Ondrovics, Martina; Silbermayr, Katja; Mitreva, Makedonka et al. (2014) Proteomics elucidates key molecules involved in exsheathment in vitro in Oesophagostomum dentatum. Int J Parasitol 44:759-64
Taylor, Christina M; Wang, Qi; Rosa, Bruce A et al. (2013) Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 9:e1003505
De Graef, J; Demeler, J; Skuce, P et al. (2013) Gene expression analysis of ABC transporters in a resistant Cooperia oncophora isolate following in vivo and in vitro exposure to macrocyclic lactones. Parasitology 140:499-508
Borloo, Jimmy; De Graef, Jessie; Peelaers, Iris et al. (2013) In-depth proteomic and glycomic analysis of the adult-stage Cooperia oncophora excretome/secretome. J Proteome Res 12:3900-11
Heizer, Esley; Zarlenga, Dante S; Rosa, Bruce et al. (2013) Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora. BMC Genomics 14:118
Wang, Zhengyuan; Gao, Xin; Martin, John et al. (2013) Gene expression analysis distinguishes tissue-specific and gender-related functions among adult Ascaris suum tissues. Mol Genet Genomics 288:243-60

Showing the most recent 10 out of 21 publications