The objective of this research proposal is to aid in the discovery of a safe and effective, prophylactic HIV vaccine. The proposed structural studies will directly impact on basic HIV vaccine discovery research by revealing key features of the HIV-1 Envelope (Env) proteins, gp120 and gp41, that are conserved and can be targeted by neutralizing antibodies. The Env proteins gp120 and gp140 are the essential targets for design of a neutralizing antibody-based HIV-1 vaccine. However, the neutralization-sensitive epitopes on gp120 and gp41 are either difficult to access or are not immunogenic. What is critically needed at present is an understanding of the arrangement and accessibility of these functionally conserved epitopes on intact Env trimers. Thus, this research will focus on the design and x-ray crystallographic structural investigations of trimeric gp140 constructs in complex with available neutralizing antibodies. In addition, design and structural characterization of an assortment of carbohydrate and peptide antigens in various contexts as complexes with the current arsenal of HIV-1 broadly neutralizing antibodies, 2G12, 4E10, and Z13e1, will be carried out to assess and advance their utility as immunogens and vaccine candidates. Furthermore, crystal structures will be determined for any exciting, new, broadly neutralizing antibodies in complex with their antigens as soon as they are discovered. The overall goal of this work is to uncover the points of vulnerability in the viral gp120 and gp41 proteins, i.e. HIV-1's Achilles'heel, that can be exploited for design of antigens that can elicit an effective protective humoral response from an HIV-1 vaccine.
The specific aims are to design and characterize stable HIV-1 trimers to advance their potential use as immunogens, to investigate novel carbohydrate-based antigens as potential immunogens, to advance the utility of the highly conserved membrane proximal external region (MPER) in gp41 as an effective immunogen, and to structurally characterize broadly neutralizing, as well as less potent antibodies, to define their Env epitopes so as to determine the structural basis for their neutralization of HIV-1. This proposal intends to advance research towards a safe and effective, prophylactic HIV vaccine that will save millions of lives. Structural investigations of broadly neutralizing anti-HIV-1 antibodies in complex with the HIV-1 envelope proteins will provide opportunities for design of new immunogens as potential vaccine candidates.

Public Health Relevance

This proposal intends to advance research towards a safe and effective, prophylactic HIV vaccine that will save millions of lives. Structural investigations of broadly neutralizing anti-HIV-1 antibodies in complex with the HIV-1 envelope proteins will provide opportunities for design of new immunogens as potential vaccine candidates.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI084817-04
Application #
8311023
Study Section
Special Emphasis Panel (ZAI1-SV-A (M2))
Program Officer
Li, Yen
Project Start
2009-09-01
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$638,394
Indirect Cost
$302,220
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Guttman, Miklos; Garcia, Natalie K; Cupo, Albert et al. (2014) CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22:974-84
Blattner, Claudia; Lee, Jeong Hyun; Sliepen, Kwinten et al. (2014) Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 40:669-80
Diebolder, Christoph A; Beurskens, Frank J; de Jong, Rob N et al. (2014) Complement is activated by IgG hexamers assembled at the cell surface. Science 343:1260-3
Garces, Fernando; Sok, Devin; Kong, Leopold et al. (2014) Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159:69-79
Bird, Gregory H; Irimia, Adriana; Ofek, Gilad et al. (2014) Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nat Struct Mol Biol 21:1058-67
Sok, Devin; Doores, Katie J; Briney, Bryan et al. (2014) Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 6:236ra63
Julien, Jean-Philippe; Lee, Jeong Hyun; Cupo, Albert et al. (2013) Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci U S A 110:4351-6
Ringe, Rajesh P; Sanders, Rogier W; Yasmeen, Anila et al. (2013) Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc Natl Acad Sci U S A 110:18256-61
Khayat, Reza; Lee, Jeong Hyun; Julien, Jean-Philippe et al. (2013) Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J Virol 87:9865-72
Julien, Jean-Philippe; Sok, Devin; Khayat, Reza et al. (2013) Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog 9:e1003342

Showing the most recent 10 out of 23 publications