Infectious agents have infected prokaryotes and eukaryotes throughout evolution. Indeed, there is co-evolution among organisms and their infectious agents, with development of protective responses in the hosts and adaptive countermeasures to them by the infectious agents. One recently identified system of viral restriction is the Apolipoprotein B editing complex (APOBEC or A) family of proteins. Human APOBEC3G was first identified as an anti-viral factor in HIV infection. The human genome encodes multiple A3 proteins, including hA3G and hA3F. hA3G and hA3F restrict infection by Vif-deficient human immunodeficiency virus 1 (HIV-1). A3 proteins are packaged into virions and inhibit retroviral replication in newly infected cells, in part by deaminating cytosines on negative strand DNA intermediates and through as of yet uncharacterized mechanisms. We recently provided the first in vivo demonstration of an antiviral function for A3 proteins. We showed that mouse mammary tumor virus (MMTV) replication was inhibited by endogenous mA3 in vivo, since mice with targeted deletion of this gene were more susceptible to infection than their wild type littermates. We also showed that hA3G was packaged into MMTV virions and inhibited infection of cultured cells. We propose here to use MMTV to further probe the function of mA3 and hA3 proteins. We will examine the mechanism by which A3 proteins are packaged into virions, restrict retrovirus infection in vitro and in vivo, the role that polymorphisms in the A3 genes plays in affecting virus restriction and whether A3 expression in mammary tissue restricts milk-borne transmission of virus. As a consequence of these studies, we will know what role/s A3 proteins play in infection by exogenous viruses. These studies will provide a basis for understanding how this family of intrinsic immune factors inhibits viral infection of the mouse and other species by exogenous viruses, including HIV-1 infection of humans.

Public Health Relevance

This project will investigate a newly discovered anti-viral host restriction factor, APOBEC3, which inhibits HIV-1 infection. Our experiments will take advantage of a unique mouse model developed by our lab to examine the role of APOBEC3 in restricting infection by the murine retrovirus mouse mammary tumor virus in vivo. These studies will provide insight into how APOBEC3 proteins inhibit infection by human retroviruses such as HIV-1 in an experimentally tractable mouse model.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI085015-03
Application #
8212496
Study Section
Virology - A Study Section (VIRA)
Program Officer
Park, Eun-Chung
Project Start
2010-02-01
Project End
2015-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
3
Fiscal Year
2012
Total Cost
$390,331
Indirect Cost
$142,831
Name
University of Pennsylvania
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Stavrou, Spyridon; Crawford, Daniel; Blouch, Kristin et al. (2014) Different modes of retrovirus restriction by human APOBEC3A and APOBEC3G in vivo. PLoS Pathog 10:e1004145
Stavrou, Spyridon; Nitta, Takayuki; Kotla, Swathi et al. (2013) Murine leukemia virus glycosylated Gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc Natl Acad Sci U S A 110:9078-83
MacMillan, Alyssa L; Kohli, Rahul M; Ross, Susan R (2013) APOBEC3 inhibition of mouse mammary tumor virus infection: the role of cytidine deamination versus inhibition of reverse transcription. J Virol 87:4808-17
Okeoma, Chioma M; Huegel, Alyssa L; Lingappa, Jaisri et al. (2010) APOBEC3 proteins expressed in mammary epithelial cells are packaged into retroviruses and can restrict transmission of milk-borne virions. Cell Host Microbe 8:534-43
Ross, Susan R (2010) Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis. Viruses 2:2000-2012