Our long term goal is to elucidate mechanisms by which respiratory syncytial virus (RSV) causes lung dysfunction. In the USA, RSV hospitalizes >100K infants/year. Pulmonary mucus is a hallmark of RSV disease. Mucus mixed with epithelial cell debris blocks the airways. Mechanisms by which RSV infection induces airway mucus are not known. Goals of this proposal are to define the role of the viral fusion (F) proteins of mucus-inducing RSV strains in pathogenesis and to define the roles of neutrophils and basophils in RSV-induced mucus. In contrast to laboratory RSV strains, RSV strains line 19 and 2-20 induce mucus and bronchiolitis in mice. Using a RSV reverse genetics system, we showed that the F protein of line 19 plays a role in mucus induction. We identified five amino acids in the line 19 F protein as candidates for involvement in mucus induction. We will use F mutant viruses to define line 19 F residues that are important for mucus expression in vivo. RSV 2- 20 is virulent in mice. We hypothesize that RSV 2-20 F contributes to airway mucus and virulence. We will define the role of 2-20 F in pathogenesis using 2-20F-chimeric RSV. Line 19 and 2-20 cause greater epithelial cell cytopathic effect (CPE) and desquamation in vivo than lab RSV strains. We will use F mutants to define effects of RSV line 19 F and 2-20 F on epithelial cell CPE, syncytia, and desquamation in vivo and in vitro. We will define the fusogenicity of RSV line 19, 2-20, and lab strain F proteins in epithelial cells in vitro using a fusion assay. We hypothesize that line 19 F and 2-20 F induce greater syncytia and fusion in vivo and in vitro. The study will also determine the roles of neutrophils and basophils in RSV bronchiolitis. Concurrently wih epithelial cell damage, RSV line 19 and 2-20 induce neutrophilia in the lungs of mice. We hypothesize that neutrophils contribute to viral clearance and mucus expression in line 19 and 2-20 pathogenesis. Line 19- induced mucus is dependent on IL-13, a TH2 cytokine. IL 4 is the primary TH2-driving cytokine. We showed that basophils are the major IL 4-expressing cell type in RSV-infection. We hypothesize that basophils contribute to RSV line 19- and 2-20-induced IL-13 and mucus expression. These RSV bronchiolitis models will advance our understanding of RSV strain-dependent pathogenesis and may lead to much-needed therapies.

Public Health Relevance

RSV causes >100,000 infant hospitalizations in the US each year and is the leading cause of bronchiolitis and viral death in infants. Mucus production is a hallmark feature of RSV disease, leading to airway obstruction, hypoxia, and mechanical ventilation. Mechanisms of RSV-induced mucus are unknown and the focus of this proposal. Elucidation of these mechanisms will identify targets for therapies

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Virology - B Study Section (VIRB)
Program Officer
Kim, Sonnie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Lee, Yu-Na; Hwang, Hye Suk; Kim, Min-Chul et al. (2015) Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease. Antiviral Res 115:8-Jan
Ko, Eun-Ju; Kwon, Young-Man; Lee, Jong Seok et al. (2015) Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. Nanomedicine 11:99-108
Kwon, Young-Man; Hwang, Hye Suk; Lee, Jong Seok et al. (2014) Maternal antibodies by passive immunization with formalin inactivated respiratory syncytial virus confer protection without vaccine-enhanced disease. Antiviral Res 104:1-6
Lee, Sujin; Quan, Fu-Shi; Kwon, Youngman et al. (2014) Additive protection induced by mixed virus-like particles presenting respiratory syncytial virus fusion or attachment glycoproteins. Antiviral Res 111:129-35
Meng, Jia; Lee, Sujin; Hotard, Anne L et al. (2014) Refining the balance of attenuation and immunogenicity of respiratory syncytial virus by targeted codon deoptimization of virulence genes. MBio 5:e01704-14
Meng, Jia; Stobart, Christopher C; Hotard, Anne L et al. (2014) An overview of respiratory syncytial virus. PLoS Pathog 10:e1004016
Wong, Terianne M; Boyapalle, Sandhya; Sampayo, Viviana et al. (2014) Respiratory syncytial virus (RSV) infection in elderly mice results in altered antiviral gene expression and enhanced pathology. PLoS One 9:e88764
Yan, Dan; Lee, Sujin; Thakkar, Vidhi D et al. (2014) Cross-resistance mechanism of respiratory syncytial virus against structurally diverse entry inhibitors. Proc Natl Acad Sci U S A 111:E3441-9
Boyoglu-Barnum, Seyhan; Chirkova, Tatiana; Todd, Sean O et al. (2014) Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol 88:10569-83
Stobart, Christopher C; Moore, Martin L (2014) RNA virus reverse genetics and vaccine design. Viruses 6:2531-50

Showing the most recent 10 out of 17 publications