Francisella tularensis is a Gram-negative intracellular bacterium capable of causing fatal systemic disease (tularemia) in a number of mammals, including humans. The bacterium is widely recognized as one of the most dangerous bacterial pathogens known because of its ease of aerosolization, low infectious dose (ID50 <10 organisms), multiple routes of infection, rapid disease onset, severe morbidity and mortality (33% human mortality rate if left untreated), and requirement for BSL3 laboratory manipulation. Despite concerns over the deliberate use of F. tularensis as a biological weapon, a licensed tularemia vaccine is not currently available and little is known about the correlates of protective immunity. Although phase 2 clinical trials are currently being planned for the live vaccine strain (LVS) of F. tularensis, there are well-documented concerns about LVS reversion to wild-type virulence, safety in immunocompromised individuals, and efficacy against an aerosol exposure. Given the clear need for a safe and effective tularemia vaccine, the goals of this proposal are to test the efficacy and safety of new acellular (subunit) vaccine formulations, derived from bacterial outer membrane vesicles (OMVs), in multiple animal models. In preliminary studies, we have demonstrated that OMVs provide up to 100% protection against Type A F. tularensis pulmonary challenge in mice. As such, this proposal will extend those findings by: (1) Evaluating the ability of OMVs to protect mice and rats from Type A F. tularensis pulmonary infection;(2) Evaluating the safety of OMV immunization in mice and rats;(3) Comparing the protective capacity of OMVs and LVS against Type A F. tularensis pulmonary challenge;(4) Developing and testing new recombinant protein vaccine formulations to protect against Type A F. tularensis pulmonary challenge, based upon recent data defining the components of OMVs;(5) Characterizing the immune responses induced by OMV immunization;(6) Characterizing the immune responses required to protect against and eliminate Type A F. tularensis pulmonary challenge. Taken together, the proposed experiments have enormous potential to advance a lead tularemia vaccine formulation and to test the safety and efficacy of new vaccine formulations against Type A F. tularensis pulmonary challenge.

Public Health Relevance

Francisella tularensis (tularemia) has been classified as a Category A Select Agent, indicating that it could be used as a biological weapon with substantial loss of human life. Because no vaccine is currently licensed for human use, the development of new vaccine formulations should remain a national priority. The projects outlined in this proposal seek to advance a lead tularemia vaccine candidate and test new vaccine formulations for efficacy and safety.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI093351-04
Application #
8610228
Study Section
Special Emphasis Panel (ZAI1-NLE-M (J1))
Program Officer
Zou, Lanling
Project Start
2011-03-15
Project End
2016-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
4
Fiscal Year
2014
Total Cost
$317,267
Indirect Cost
$105,473
Name
University of Toledo
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
807418939
City
Toledo
State
OH
Country
United States
Zip Code
43614
Ren, Guoping; Champion, Matthew M; Huntley, Jason F (2014) Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol Microbiol 94:926-44