The emergence of antibiotic resistant bacteria is one of the most challenging public health problems affecting humankind in the 21st century. Among these bacteria, vancomycin-resistant enterococci (VRE) are one of the most difficult organisms to treat in hospitals across the US. Only two antimicrobial compounds are currently FDA-approved for the treatment of VRE infections;namely, linezolid and quinupristin-dalfopristin (Q/D). However, the use of these two agents against VRE has been hampered by suboptimal therapeutic outcomes in severe infections, frequent occurrence of side effects and the emergence and widespread dissemination of linezolid- and Q/D-resistant VRE isolates. Daptomycin (DAP) is a lipopeptide antibiotic whose mechanism of killing involves the interaction with the bacterial cell membrane (CM) in a calcium-dependent manner. DAP is the only bactericidal antibiotic currently available with activity against VRE. Although DAP does not have an FDA-approved indication for the treatment of VRE infections, clinicians are often pushed to use DAP due to the lack of better alternatives to treat patients infected with VRE who are often severely ill and with important compromise of the immune system. The off-label use of DAP during VRE therapy has led in several instances to the development of DAP resistance (DAP-R), thus, worsening the clinical scenario even further. Our long- term goal for this grant application is to understand the molecular events that lead to the development of DAP- R during VRE therapy to be able to i) design improved therapeutic strategies to prevent the emergence of DAP-R, and ii) identify new potential targets for antimicrobial development in the future with the aim of protecting the efficacy of DAP against VRE. Based on the information gathered from the comparative whole- genome, CM and cell envelope ultrastructural analysis of VRE clinical strain pairs of DAP-susceptible and DAP-resistant Enterococcus faecalis (VREfs) and E. faecium (VREfm), we have identified two genes that are highly likely to be involved in the development of DAP-R: i) a gene (cls) encoding a cardiolipin synthase enzyme in both VREfs and VREfm, involved in cell membrane homeostasis and ii) a VREfs homolog of the liaF gene, which is part of a three-component gene system involved in the bacterial cell envelope response to antimicrobials and antimicrobial peptides. Thus, we aim to a) investigate the contribution of mutations in the above genes (cls in both VREfs and VREfm and liaF in VREfs) to DAP-resistance, and b) evaluate strategies to optimize the use of DAP for VRE by testing the effect of escalating doses of DAP and combination therapies of DAP with i) ampicillin (for VREfs), and ii) with tigecycline or rifampin (for VREfm), in preventing emergence of DAP-R using a murine model of infective endocarditis. We anticipate that these studies will contribute to a deeper understanding of the role of CM phospholipid homeostasis and cell envelope regulation in the development of antibiotic resistance and antimicrobial peptide action and will certainly facilitate the preservation of DAP as a useful antibiotic to treat VRE infections in the future.

Public Health Relevance

This proposal seeks to understand the molecular strategies used by vancomycin-resistant enterococci (VRE, a common hospital-associated pathogen) to develop resistance to the antibiotic daptomycin;a compound of last resource to treat VRE infections. We aim to design strategies to prevent the emergence of daptomycin resistance in VRE and potentially characterize novel targets for the development of antimicrobial agents with activity against enterococci and other multidrug resistant organisms.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Huntley, Clayton C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center Houston
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Planet, Paul J; Diaz, Lorena; Rios, Rafael et al. (2016) Global Spread of the Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant. J Infect Dis 214:1609-1610
Harp, John R; Saito, Holly E; Bourdon, Allen K et al. (2016) Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR. Appl Environ Microbiol 82:4410-20
Tran, Truc T; Miller, William R; Shamoo, Yousif et al. (2016) Targeting cell membrane adaptation as a novel antimicrobial strategy. Curr Opin Microbiol 33:91-96
Munita, Jose M; Arias, Cesar A (2016) Mechanisms of Antibiotic Resistance. Microbiol Spectr 4:
Tran, Truc T; Palmer, Hannah R; Weimar, Marion R et al. (2015) Oral Bacitracin: A Consideration for Suppression of Intestinal Vancomycin-Resistant Enterococci (VRE) and for VRE Bacteremia From an Apparent Gastrointestinal Tract Source. Clin Infect Dis 60:1726-8
Panesso, Diana; Planet, Paul J; Diaz, Lorena et al. (2015) Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil. Emerg Infect Dis 21:1844-8
Planet, Paul J; Diaz, Lorena; Kolokotronis, Sergios-Orestis et al. (2015) Parallel Epidemics of Community-Associated Methicillin-Resistant Staphylococcus aureus USA300 Infection in North and South America. J Infect Dis 212:1874-82
Reyes, Jinnethe; Panesso, Diana; Tran, Truc T et al. (2015) A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis. J Infect Dis 211:1317-25
Munita, Jose M; Bayer, Arnold S; Arias, Cesar A (2015) Evolving resistance among Gram-positive pathogens. Clin Infect Dis 61 Suppl 2:S48-57
Hidalgo, Marylin; Carvajal, Lina P; Rincón, Sandra et al. (2015) Methicillin-Resistant Staphylococcus aureus USA300 Latin American Variant in Patients Undergoing Hemodialysis and HIV Infected in a Hospital in Bogotá, Colombia. PLoS One 10:e0140748

Showing the most recent 10 out of 38 publications