RNA and DNA elicit inflammatory responses which are critical for anti-microbial immunity. DNA is a potent trigger of inflammatory cytokine and type I IFN gene transcription, as well as caspase-1-mediated processing of the pro-inflammatory cytokines IL-1? and IL-18. Growing evidence indicates that DNA recognition is central not only to anti-microbial host defenses but is also a major contributor to the adjuvant activity of DNA vaccines as well as the pathology associated with autoimmune diseases such as Systemic Lupus Erythematosis. It is therefore critical that we understand the molecular basis of DNA recognition. Recent work from our group has implicated the PYHIN family members Absent in melanoma-2 (AIM2) and the interferon-inducible protein (IFI16) as sensors of microbial DNA. Both proteins bind DNA via HIN domains.
AIM2 engages ASC via a pyrin domain to form a caspase-1 activating inflammasome while IFI16 activates a cytosolic signaling pathway involving Stimulator of IFN genes (STING), TANK binding kinase-1 (TBK-1) and interferon regulatory factor 3 (IRF3) to regulate transcription of type I IFN genes. Knockdown of IFI16, or its murine ortholog p204 prevents viral DNA from triggering IRF3 activation and IFN? gene induction, while not affecting responses to cytosolic RNA. Recent evidence also indicates that IFI16 can form an inflammasome in responses to nuclear sensing of Kaposi's Sarcoma Herpes Virus infection. Additional work from our laboratories has also implicated the DEAD box helicase DEAD box protein 3x (DDX3x) in the TBK1/IRF3 signaling pathway important for both RNA and cytoplasmic DNA pathways (including for IFI16), but its role in innate immunity remains to be fully characterized. The underlying hypothesis to be tested in this proposal is that IFI16 plays a central role in innate immunity and host-defense to microbial pathogens by regulating inflammatory responses and that DDX3x is an important downstream component of the IFI16 signaling pathway. We propose to explore the molecular mechanisms of IFI16 activation and define the role of IFI16 and DDX3x in anti-viral host-defenses. This project will increase our understanding of how the innate immune system senses pathogens, leading to novel therapeutic targets.

Public Health Relevance

Cells have immune sensors that detect DNA from invading viruses, giving rise to appropriate protective anti-viral cellular responses controlled by interferons. These responses are at times inappropriately activated by self-DNA, leading to pathological autoimmune responses. We have discovered that a cellular protein called IFI16 is such a sensor, and understanding how it works will lead to therapies to enhance or dampen immune responses to fight pathogens or suppressing autoimmune responses respectively.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Innate Immunity and Inflammation Study Section (III)
Program Officer
Palker, Thomas J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Medical School Worcester
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Bhat, Numana; Fitzgerald, Katherine A (2014) Recognition of cytosolic DNA by cGAS and other STING-dependent sensors. Eur J Immunol 44:634-40
Thompson, Mikayla R; Sharma, Shruti; Atianand, Maninjay et al. (2014) Interferon ?-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem 289:23568-81
Kalantari, Parisa; DeOliveira, Rosane B; Chan, Jennie et al. (2014) Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep 6:196-210
Gurtler, Claudia; Bowie, Andrew G (2013) Innate immune detection of microbial nucleic acids. Trends Microbiol 21:413-20
Xiao, T Sam; Fitzgerald, Katherine A (2013) The cGAS-STING pathway for DNA sensing. Mol Cell 51:135-9
Paludan, Soren R; Bowie, Andrew G (2013) Immune sensing of DNA. Immunity 38:870-80
Holm, Christian K; Paludan, Soren R; Fitzgerald, Katherine A (2013) DNA recognition in immunity and disease. Curr Opin Immunol 25:13-8
Kaminski, John J; Schattgen, Stefan A; Tzeng, Te-Chen et al. (2013) Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation. J Immunol 191:3876-83
Sokolovska, Anna; Becker, Christine E; Ip, W K Eddie et al. (2013) Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 14:543-53
Conlon, Joseph; Burdette, Dara L; Sharma, Shruti et al. (2013) Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol 190:5216-25

Showing the most recent 10 out of 11 publications