Chagas disease caused by the parasitic protozoan Trypanosoma cruzi remains a major public health concern in Latin America and is now spreading worldwide. At the chronic stage, the disease is commonly fatal. Indeed, serious cardiac and/or digestive symptoms develop in 20-40% of infected individuals 10 to 20 years later, with no curative therapies available. The progression to the chronic phase depends on parasite persistence in tissues. In this context, a series of molecular components of T. cruzi have been suggested as virulence factors which contribute to the severity of the disease. Oxidative assault to the parasite by exogenously- or endogenously-generated reactive species promoted by host cell-derived mediators has been revealed as a key mechanism accounting for parasite control. Indeed, superoxide (O2((), nitric oxide ((NO) and peroxynitrite (ONOO( ) appear to be molecular effectors for parasite cell death. However, the cellular origin (i.e. mammalian cell vs. T. cruzi), subcellular location and chemical characterization of the oxidizing species interacting with molecular targets in the parasite remain largely undefined. In turn, the parasites contain an array of enzyme-based antioxidant systems that attenuate or neutralize the effects of oxidants. Herein, we hypothesize that the redox balance provided by the T. cruzi antioxidant systems play a central role for virulence and parasite persistence in tissues and progression to the chronic phase. This hypothesis will be tested in infective and non-infective forms of T. cruzi, in infected cardiomyocytes and in a murine model of Chagas disease;the project also involves biochemical studies with purified antioxidant enzymes and the development and testing of specific redox-sensitive probes to study parasite oxidative stress. Three interrelated Specific Aims will be pursued: 1. Measure and characterize cardiomyocyte-induced T. cruzi oxidative stress with the use of novel methodologies and define its contribution to parasite control 2. Study the interactions of T. cruzi superoxide dismutases (TcFeSODs) with O2((-, (NO and ONOO( and examine their role in parasite programmed cell death 3. Assess the participation of the T. cruzi antioxidant network in the establishment of the infection and parasite persistence in vitro and in vivo. The research plan is designed to address at the molecular, cellular and animal levels relevant aspects in the pathogenesis of Chagas disease by assessing the contribution of the parasite antioxidant systems towards virulence and persistence. Successful completion of the proposed studies will 1) unambiguously establish the genesis of parasite oxidative stress during the infection process, 2) shed light on the contribution of the oxidant-antioxidant balance on parasite control, 3) determine the role of the parasite antioxidant network in disease severity and progression and 4) promote drug design and development.

Public Health Relevance

The proposed studies will unravel how key components of the Trypanosoma cruzi enzyme antioxidant system participate in the susceptibility to and progression of Chagas disease. We anticipate identifying novel targets for disease prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI095173-04
Application #
8721836
Study Section
Special Emphasis Panel (ZRG1-IDM-R (50))
Program Officer
Wali, Tonu M
Project Start
2011-07-14
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
$105,840
Indirect Cost
$6,961
Name
University of the Republic
Department
Type
DUNS #
966006921
City
Montevideo
State
Country
Uruguay
Zip Code
11800
Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A et al. (2014) Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolec J Biol Chem 289:12760-78
Zeida, Ari; Reyes, Anibal M; Lebrero, Mariano C G et al. (2014) The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step. Chem Commun (Camb) 50:10070-3
Tovmasyan, Artak; Carballal, Sebastian; Ghazaryan, Robert et al. (2014) Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorg Chem 53:11467-83
Carballal, Sebastian; Bartesaghi, Silvina; Radi, Rafael (2014) Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta 1840:768-80
Guardia, Carlos M; Caramelo, Julio J; Trujillo, Madia et al. (2014) Structural basis of redox-dependent modulation of galectin-1 dynamics and function. Glycobiology 24:428-41
Prolo, Carolina; Alvarez, Maria Noel; Radi, Rafael (2014) Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens. Biofactors 40:215-25
Turell, LucĂ­a; Radi, Rafael; Alvarez, Beatriz (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244-53
Zeida, Ari; Gonzalez Lebrero, Mariano C; Radi, Rafael et al. (2013) Mechanism of cysteine oxidation by peroxynitrite: An integrated experimental and theoretical study. Arch Biochem Biophys 539:81-6
Radi, Rafael (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46:550-9
Radi, Rafael (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464-72

Showing the most recent 10 out of 14 publications