Skin inflammation in Atopic Dermatitis (AD) patients includes dendritic cells, mast cells and T cells. Evidence for the function of several T helper subsets in AD exists both from patient samples and from mouse models. There is clearly a genetic component in disease;family history of allergy is one of the strongest predictors of AD, and mutations in the filaggrin (FLG) gene, a component of the Epidermal Differentiation Complex (EDC), have emerged as a predisposing factor for the development of AD. IL-4 and IL-13 promote atopic responses and decrease expression of a number of EDC genes, which are critical for barrier function. One of the primary questions that remain unanswered is whether the defect leading to AD is in the skin, in the atopic immune system, or whether disease requires defects in both systems. Central to answering this question is an understanding of how the immune system and the skin, particularly keratinocytes, interact at the molecular level. The overall goal of this Project is to define the interactions of cytokines that promote the development of atopic inflammation on keratinocyte gene expression and function, with the long-term goal of finding pathways that could be targeted for treatment of disease. Our hypothesis is that pro-allergic cytokines change the biology of keratinocytes and alter barrier function, facilitating increased allergen exposure. This hypothesis will be examined in two Aims that will examine the interactions of filaggrin mutations with increased Th2 immunity in a mouse model system, and define the function of STAT6 in regulating keratinocyte gene expression. Together, these studies will provide a detailed understanding of the effects of cytokines produced during allergic inflammation on skin barrier function.

Public Health Relevance

Skin provides a barrier to harmful components in the environment including infection. Atopic Dermatitis, an allergic disease of the skin alters the barrier function of the skin and increases allergic inflammation and infection. This proposal defines the mechanism of altered barrier function and examines the interactions of the immune system with genes involved in barrier function.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Minnicozzi, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
Schools of Medicine
United States
Zip Code
Kälin, Stefanie; Becker, Maike; Ott, Verena B et al. (2017) A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metab 26:475-492.e7
Serezani, Ana P M; Bozdogan, Gunseli; Sehra, Sarita et al. (2017) IL-4 impairs wound healing potential in the skin by repressing fibronectin expression. J Allergy Clin Immunol 139:142-151.e5
Krishnamurthy, Purna; Da-Silva-Arnold, Sonia; Turner, Matthew J et al. (2017) Poly-ADP ribose polymerase-14 limits severity of allergic skin disease. Immunology 152:451-461
Sehra, Sarita; Krishnamurthy, Purna; Koh, Byunghee et al. (2016) Increased Th2 activity and diminished skin barrier function cooperate in allergic skin inflammation. Eur J Immunol 46:2609-2613
Sehra, Sarita; Serezani, Ana P M; Ocaña, Jesus A et al. (2016) Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation. J Invest Dermatol 136:1429-1437
Ebel, Mark E; Awe, Olufolakemi; Kaplan, Mark H et al. (2015) Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38? MAPK. J Immunol 194:5781-8
Mehrotra, Purvi; Krishnamurthy, Purna; Sun, Jie et al. (2015) Poly-ADP-ribosyl polymerase-14 promotes T helper 17 and follicular T helper development. Immunology 146:537-46
Sarria, Edgar E; Mattiello, Rita; Yao, Weiguo et al. (2014) Atopy, cytokine production, and airway reactivity as predictors of pre-school asthma and airway responsiveness. Pediatr Pulmonol 49:132-9
Reese, T A; Wakeman, B S; Choi, H S et al. (2014) Helminth infection reactivates latent ?-herpesvirus via cytokine competition at a viral promoter. Science 345:573-7
Krishnamurthy, Purna; Sherrill, Joseph D; Parashette, Kalyan et al. (2014) Correlation of increased PARP14 and CCL26 expression in biopsies from children with eosinophilic esophagitis. J Allergy Clin Immunol 133:577-80

Showing the most recent 10 out of 17 publications