One new challenge for vaccine design is the development of effective vaccines for the ever growing geriatric population. Influenza is a highly contagious viral infection of the respiratory tract that afflicts 3-5 million people world-wide with 200,000-500,000 deaths each year. The elderly (>65 years) are especially prone to severe influenza infection. There is now strong evidence that the seasonal H1N1 influenza vaccine is largely ineffective for these elderly subjects, subjecting them to high risk of complication, hospitalization and death. The ineffectiveness of current flu vaccines in the elderly has been associated with immunosenescence, which is a gradual age-associated deterioration of the immune system. There is growing belief that some of the key limitations resulting in immunosenescence can be overcome by improved immunization strategies, such as the use of novel adjuvants to promote effective memory immunity. Current adjuvants typically work by activating dendritic cells (DCs) at the site of vaccine administration and enhancing the trafficking of antigen-loaded DCs to the draining lymph nodes (DLNs), the epicenter of the adaptive immune response and where antigen presentation to T cells occurs. Here, we propose an alternate strategy to accelerate and maximize the immune responses. We recently developed a particle-mediated vaccine system capable of transporting critical immunostimulatory cytokines directly to the DLN during vaccination. This adjuvant technology induced rapid and significant organizational changes to the DLNs of aged mice, animals that are not immunoresponsive, like their human counterparts. The changes in the DLNs induced by targeted delivery of these immunomodulators were consistent with robust immune responses, including vigorous and sustained recruitment of not only DCs but also T cells. The objective of this proposal is to develop an effective immune stimulatory strategy and adjuvant formulation with the potential of overcoming immunosenescence.
The Specific aims are: 1) Optimize the composition, size and loading of biocompatible and degradable nanoparticles with various combinations of immunodulatory mediators to achieve maximal delivery and controlled release in the DLNs;2) Demonstrate the safety and efficacy of a vaccine formulation comprising the seasonal Flu vaccine and various cytokine-loaded nanoparticles in promoting maximal immunity in aged mice;3) Evaluate the prophylactic and therapeutic ability of the flu vaccine in combination with lymph node activating nanoparticles in protecting aged mice against lethal influenza virus infections. If proven successful, this approach could serve as a new paradigm for improving vaccines in general.

Public Health Relevance

to Healthcare Many vaccines are ineffective in elderly patients (>65 years) because of immunosenescence, a gradual age-associated deterioration of the immune system. We have developed a particle- mediated adjuvant technology capable of delivering critical immunostimulatory cytokines directly to the draining lymph node, the epicenter of the adaptive immune response and where antigen presentation to T cells occurs. By accelerating and maximizing the immune responses to previously non-responsive subpopulations, this vaccine technology may significantly improve the healthcare of elderly patients.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01AI096305-03
Application #
8602827
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Salomon, Rachelle
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Choi, Hae Woong; Abraham, Soman N (2015) Mast cell mediator responses and their suppression by pathogenic and commensal microorganisms. Mol Immunol 63:74-9
Lu, Mengqian; Yang, Shikuan; Ho, Yi-Ping et al. (2014) Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing. ACS Nano 8:10026-34
Chiu, Ya-Ling; Chan, Hon Fai; Phua, Kyle K L et al. (2014) Synthesis of fluorosurfactants for emulsion-based biological applications. ACS Nano 8:3913-20
Lu, Mengqian; Ho, Yi-Ping; Grigsby, Christopher L et al. (2014) Three-dimensional hydrodynamic focusing method for polyplex synthesis. ACS Nano 8:332-9
Phua, Kyle K L; Boczkowski, David; Dannull, Jens et al. (2014) Whole blood cells loaded with messenger RNA as an anti-tumor vaccine. Adv Healthc Mater 3:837-42
Miao, Yuxuan; Abraham, Soman N (2014) Kidney ?-intercalated cells and lipocalin 2: defending the urinary tract. J Clin Invest 124:2844-6
Phua, Kyle K L; Nair, Smita K; Leong, Kam W (2014) Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale 6:7715-29
Zhang, Xiaofeng (2014) Instrumentation in Diffuse Optical Imaging. Photonics 1:9-32
St John, Ashley L; Abraham, Soman N (2013) Innate immunity and its regulation by mast cells. J Immunol 190:4458-63
Phua, Kyle K L; Leong, Kam W; Nair, Smita K (2013) Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J Control Release 166:227-33

Showing the most recent 10 out of 15 publications