Salmonella enterica serotype Typhimurium (S. typhimurium) causes gastroenteritis, a diarrheal illness characterized by acute intestinal inflammation. The pathogen triggers inflammation by using its virulence factors to invade the intestinal epithelium and survive in tissue macrophages. Inflammation is accompanied by changes in the luminal environment, which tip the balance in the competition between S. typhimurium and the resident microbiota in favor of the pathogen. The question of which mechanisms are responsible for these changes in the microbiota composition represents a high-impact topic that will be addressed in this application. Our central hypothesis is that inflammation generates a new respiratory electron acceptor, tetrathionate, which promotes a luminal outgrowth of S. typhimurium by enabling the pathogen to utilize compounds that cannot be further broken down by fermentation in the anaerobic environment of the gut. We will test different aspects of our hypothesis by determining whether removal of sulfide can prevent tetrathionate respiration in the gut (Aim 1), the role of energy taxis during growth in the inflamed gut (Aim 2) and whether S. typhimurium utilizes specific nutrients during inflammation (Aim 3). The proposed research will drive knowledge about gastroenteritis to a higher level by providing critical new insights into molecular mechanisms that control the balance between the pathogen, the host and its microbiota (Aims 2 and 3) and by facilitating the development of new intervention strategies through science (Aim 1). The conceptual advances resulting from the proposed work are thus expected to have a strong and sustained influence on the field.

Public Health Relevance

Non-typhoidal Salmonella serotypes are the single most common cause of death from diarrheal disease associated with viruses, parasites or bacteria and the leading cause of food-borne disease outbreaks in the United States, producing between $0.5 billion to $2.3 billion in annual costs for medical care and lost productivity. The most common human clinical isolates are Salmonella enterica serotypes Typhimurium (S. typhimurium) and Enteritidis (S. Enteritidis). Research proposed in this application will support pioneering studies on molecular mechanisms that control the balance between the pathogen, the host and its microbiota. The proposed studies will drive knowledge about Salmonella gastroenteritis to a higher level by providing critical new insights into pathogenesis and by facilitating the development of new intervention strategies through science.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI096528-02
Application #
8258733
Study Section
Special Emphasis Panel (ZRG1-IDM-S (02))
Program Officer
Alexander, William A
Project Start
2011-05-01
Project End
2016-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
2
Fiscal Year
2012
Total Cost
$379,262
Indirect Cost
$129,262
Name
University of California Davis
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Rivera-Chávez, Fabian; Zhang, Lillian F; Faber, Franziska et al. (2016) Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 19:443-54
Faber, Franziska; Tran, Lisa; Byndloss, Mariana X et al. (2016) Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature 534:697-9
Rivera-Chávez, Fabian; Lopez, Christopher A; Zhang, Lillian F et al. (2016) Energy Taxis toward Host-Derived Nitrate Supports a Salmonella Pathogenicity Island 1-Independent Mechanism of Invasion. MBio 7:
Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian et al. (2016) Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353:1249-53
Vázquez-Torres, Andrés; Bäumler, Andreas J (2016) Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol 29:1-8
Keestra-Gounder, A Marijke; Byndloss, Mariana X; Seyffert, Núbia et al. (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532:394-7
Bäumler, Andreas J; Sperandio, Vanessa (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85-93
Keestra-Gounder, A Marijke; Tsolis, Renée M; Bäumler, Andreas J (2015) Now you see me, now you don't: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol 13:206-16
Lopez, Christopher A; Rivera-Chávez, Fabian; Byndloss, Mariana X et al. (2015) The Periplasmic Nitrate Reductase NapABC Supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis. Infect Immun 83:3470-8
Faber, Franziska; Bäumler, Andreas J (2014) The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol Lett 162:48-53

Showing the most recent 10 out of 24 publications