Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. The parasite has a complex secretory system essential for host cell invasion and establishment of the parasitophorous vacuole. Biogenesis of these secretory organeles remains poorly understood but several groups have postulated a compartment situated between Golgi and mature micronemes and rhoptries in which sorting and processing occurs. We have recently discovered a novel post-Golgi compartment of T. gondii that we named the plant-like vacuole (PLV) and the goal of this project is to investigate its function in the biology of the parasite. This organelle is a large multi-vesicular structure that possesses similarities to the central vacuole found in plant cells. This organelle can be labeled with antibodies against proteins with great similarity to vacuolar plant pumps and channels, such as a K+sensitive V-H+PPase (TgVP1), and a tonoplast-like aquaporin (TgAQP1). Physiological studies further revealed similarities to plant vacuoles such as the presence of a V-H+ATPase, Na+/H+ and Ca2+/H+ antiporters, and calcium storage. Furthermore, as plant vacuoles, the PLV also contains proteases such as cathepsin L (TgCPL) and others. Our results and those of our collaborators showed that the PLV is a prominent feature of extracellular tachyzoites and, as the plant vacuole, has multiple potential functions including roles in protein sorting and resistance to environmental stresses. For example, the role of this vacuole in the proteolytic maturation of at least two microneme precursor proteins, proTgM2AP and proTgMIC3, suggests that this organelle could represent an endocytic/exocytic hub where sorting of proteins targeted to various organelles occurs. T. gondii tachyzoites that overexpress VP1 in the PLV, become more resistant to sodium stress pointing to an important role of the PLV in resistance to environmental ionic stress. Ionic stress is a major challenge that T. gondii confronts when exiting the host cell into the extracellular media. There is a dramatic change in the concentration of sodium, potassium, calcium and other ions between the intracellular and the extracellular environment. Dealing with these stressful changes is important for the survival of the parasite, which needs to actively invade other host cells to continue with its lytic cycle. We will test two hypotheses, which have been developed based on the functions of the plant vacuole and preliminary observations in the parasite, using a combination of genetic and cell biological experiments. This novel organelle acts to regulate ions and/or as a post Golgi sorting compartment for secretory proteins destined to the micronemes, rhoptries, and acidocalcisomes. These models are not mutually exclusive if we take into account the fact that the plant vacuole is home to a complex set of functions (storage, sorting, stress, plant growth, etc.). We think that the PLV plays a central role during the extracellular phase of the parasite not only in resisting environmental stress but also as it prepares itself for invading the next host cell.

Public Health Relevance

This work is designed to test the hypotheses that the plant-like vacuole (PLV) of T. gondii is involved in the regulation of calcium and pH homeostasis and response to salt stress, as well as in sorting and processing of proteins to organelles such as the rhoptries and acidocalcisomes. Our work could provide potential targets for chemotherapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
4R01AI096836-05
Application #
8968805
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mcgugan, Glen C
Project Start
2011-12-01
Project End
2017-11-30
Budget Start
2015-12-01
Budget End
2017-11-30
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Georgia
Department
Public Health & Prev Medicine
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Hortua Triana, Miryam A; Márquez-Nogueras, Karla M; Chang, Le et al. (2018) Tagging of Weakly Expressed Toxoplasma gondii Calcium-Related Genes with High-Affinity Tags. J Eukaryot Microbiol 65:709-721
Sidik, Saima M; Hortua Triana, Miryam A; Paul, Aditya S et al. (2016) Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling. J Biol Chem 291:9566-80
Lourido, Sebastian; Moreno, Silvia N J (2015) The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 57:186-93
Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A et al. (2015) Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A STUDY USING GENETICALLY ENCODED CALCIUM INDICATORS. J Biol Chem 290:26914-26
Tang, Qing; Andenmatten, Nicole; Hortua Triana, Miryam A et al. (2014) Calcium-dependent phosphorylation alters class XIVa myosin function in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 25:2579-91
Docampo, Roberto; Moreno, Silvia N J; Plattner, Helmut (2014) Intracellular calcium channels in protozoa. Eur J Pharmacol 739:4-18
Liu, Jing; Pace, Douglas; Dou, Zhicheng et al. (2014) A vacuolar-H(+) -pyrophosphatase (TgVP1) is required for microneme secretion, host cell invasion, and extracellular survival of Toxoplasma gondii. Mol Microbiol 93:698-712
Pace, Douglas A; McKnight, Ciara A; Liu, Jing et al. (2014) Calcium entry in Toxoplasma gondii and its enhancing effect of invasion-linked traits. J Biol Chem 289:19637-47
Moreno, Silvia N J; Docampo, Roberto (2013) Polyphosphate and its diverse functions in host cells and pathogens. PLoS Pathog 9:e1003230
De Napoli, M G; de Miguel, N; Lebrun, M et al. (2013) N-terminal palmitoylation is required for Toxoplasma gondii HSP20 inner membrane complex localization. Biochim Biophys Acta 1833:1329-37