To spread infection, many enveloped viruses are released from infected cells by budding off of the plasma membrane. Recently, an interferon-induced membrane protein, tetherin/ BST2, has been identified as a potent host antiviral factor inhibiting the release of a range of enveloped viruses, such as HIV-1. Tetherin directly tethers viruses to the host plasma membrane and interacts with the cellular endocytic machinery for viral internalization and degradation. HIV-1 viral protein U (Vpu) antagonizes tetherin by recruiting a host cellular E3 ubiquitin ligase to polyubiquitinate tetherin, thereby directing it to host pathways recognizing ubiquitin as a trafficking signal such as proteosomal/lysosomal degradation and/or endosomal segregation. The overall goal of our study is to establish the mechanisms by which tetherin restricts the release of enveloped viruses and the mechanisms by which viruses antagonize tetherin. We will achieve our goal by using a multidisciplinary approach combining cutting-edge biochemical and biophysical techniques, functional virology, cryo-electron microscopy and electron tomography, and X-ray crystallographic methods to determine the biochemical and structural principles of tetherin function, to investigate viral-cellular interactions in HIV-1 antagonization of tetherin, and to test their functional significance. Our work will allow for the elucidation of a major host immune defense mechanism and significantly advance our understanding of a diverse range of host-viral interplays. Information derived from our studies will generate a framework for the development of new therapeutic interventions of HIV and other viruses. Moreover, the experimental systems devised for our research project will provide valuable new tools for the studies of host-pathogen relationships.

Public Health Relevance

The proposed research aims to establish the mechanisms by which the host antiviral factor tetherin suppresses HIV and the mechanisms by which HIV antagonizes tetherin. The results obtained may lead to the elucidation of a major host immune defense system for the development of new therapeutic interventions of HIV infection.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Sharma, Opendra K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Jia, Xiaofei; Zhao, Qi; Xiong, Yong (2015) HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 31:106-14
Ji, Xiaoyun; Tang, Chenxiang; Zhao, Qi et al. (2014) Structural basis of cellular dNTP regulation by SAMHD1. Proc Natl Acad Sci U S A 111:E4305-14
Jia, Xiaofei; Weber, Erin; Tokarev, Andrey et al. (2014) Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. Elife 3:e02362
Ji, Xiaoyun; Wu, Ying; Yan, Junpeng et al. (2013) Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol 20:1304-9
Yang, Haitao; Ji, Xiaoyun; Zhao, Gongpu et al. (2012) Structural insight into HIV-1 capsid recognition by rhesus TRIM5?. Proc Natl Acad Sci U S A 109:18372-7
Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie et al. (2012) Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Nat Struct Mol Biol 19:701-6
Yang, Haitao; Wang, Jimin; Jia, Xiaofei et al. (2010) Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proc Natl Acad Sci U S A 107:18428-32