Natural killer (NK) cells comprise an arm of the immune system that specifically target virus-infected host cells. NK cells have recently been demonstrated in mouse and humans to possess novel features including the ability to generate immune """"""""memory"""""""" following viral infection. NK cell-deficiency in humans results in severe health complications due to susceptibility to a variety of viral infections. Our long-term goals are to understand the general biology of NK cells and the molecular basis by which these powerful effector cells can mediate protection against pathogen invasion. Mouse cytomegalovirus (MCMV) infection is a well-characterized system for the study of anti- viral NK cell responses. The pathogenesis of MCMV and immune evasion strategies employed by this virus closely mimic features of human cytomegalovirus (HCMV), thus providing a good model for HCMV infection, which causes life-threatening disease in newborns and immunocompromised individuals. Together with the abundance of cutting- edge immunological tools and reagents available only in mice, MCMV infection presents a powerful model for identifying the molecular requirements that control activation and inhibition of NK cells responses. Using this model, our preliminary studies indicate that pro-inflammatory cytokines such as IL-12 play an important role in the generation of NK cell """"""""memory"""""""" following MCMV infection. The overall goals of this proposal are to understand the influence of opposing pro- and anti-inflammatory cytokine signaling pathways on the response of NK cells against viral infection.
Aims 1 and 2 will build upon our preliminary findings and investigate the role of pro-inflammatory and regulatory cytokines, and downstream signaling components, on the generation of effector and """"""""memory"""""""" NK cells following MCMV infection. Using newly-engineered transgenic mouse models, Aim 3 will address how inflammation-induced transcription factors direct NK cell function in a cell-intrinsic manner during MCMV infection. Together, the studies in this proposal will not only increase our understanding of the general molecular mechanisms whereby NK cells contribute to host defense during viral infection, but also establish novel clinical paradigms for how the NK cell compartment may be harnessed for immunization strategies against infectious disease.

Public Health Relevance

Cytomegalovirus (CMV) can cause serious health problems and life-threatening disease in newborns and immune-suppressed individuals (including cancer and transplant patients). Using a mouse model of CMV, this proposal seeks to understand the role of opposing inflammatory cytokines and transcription factors in the natural killer (NK) cell- mediated control of viral infection. Defining the molecular mechanisms by which NK cells respond to CMV infection will potentially lead to therapeutic benefits.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Immunity and Host Defense Study Section (IHD)
Program Officer
Miller, Lara R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
O'Sullivan, Timothy E; Sun, Joseph C (2017) Innate Lymphoid Cell Immunometabolism. J Mol Biol 429:3577-3586
Weizman, Orr-El; Adams, Nicholas M; Schuster, Iona S et al. (2017) ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell 171:795-808.e12
Geary, Clair D; Sun, Joseph C (2017) Memory responses of natural killer cells. Semin Immunol 31:11-19
Johnson, Lexus R; Weizman, Orr-El; Rapp, Moritz et al. (2016) Epitope-Specific Vaccination Limits Clonal Expansion of Heterologous Naive T Cells during Viral Challenge. Cell Rep 17:636-644
Adams, Nicholas M; O'Sullivan, Timothy E; Geary, Clair D et al. (2016) NK Cell Responses Redefine Immunological Memory. J Immunol 197:2963-2970
Geiger, Theresa L; Sun, Joseph C (2016) Development and maturation of natural killer cells. Curr Opin Immunol 39:82-9
Beaulieu, Aimee M; Sun, Joseph C (2016) Tracking Effector and Memory NK Cells During MCMV Infection. Methods Mol Biol 1441:1-12
O'Sullivan, Timothy E; Geary, Clair D; Weizman, Orr-El et al. (2016) Atg5 Is Essential for the Development and Survival of Innate Lymphocytes. Cell Rep 15:1910-9
Madera, Sharline; Rapp, Moritz; Firth, Matthew A et al. (2016) Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J Exp Med 213:225-33
O'Sullivan, Timothy E; Rapp, Moritz; Fan, Xiying et al. (2016) Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity 45:428-41

Showing the most recent 10 out of 33 publications