Disrupting Vector-borne Disease Transmission in Complex Urban Environments This proposal will improve modeling of vector-borne disease transmission by developing new methods to make inference on unobserved spatial processes that are robust to the inaccuracies and uncertainties inherent in spatial data collection. To develop and evaluate our methods, we will conduct fieldwork in the city of Arequipa, Peru, where transmission of the parasitic agent of Chagas disease, Trypanosoma cruzi, by the insect vector Triatoma infestans is a serious urban problem. Chagas disease is one of the most deadly vector-borne diseases in the Americas;over 8 million people are infected with T. cruzi. Of these 8 million individuals 20% to 30% are expected to progress to cardiac or digestive forms of chronic Chagas disease which are difficult to treat and often fatal. The dense environment of cities facilitates the spread of vectors and parasites, hindering control efforts and putting large numbers of individuals at risk for infection. Further complicating control is the grid of city strets that leads to complex patterns of vector dispersal. Our proposal consists of three specific aims;each addresses a broad challenge to elucidating unseen processes of the spread of vector-borne diseases: 1) Mapping: To create maps of vector infestation that account for imperfect entomological surveys and spatial barriers in a landscape;2) Modeling Spread: To predict T. infestans dispersal through a city despite imperfect maps of its initial occurrence;and, 3) Spatia Control: To detect foci of T. infestans re-emergence and micro-epidemics of T. cruzi infection through adaptive spatial sampling. Achieving these three interlocking aims will improve control of many vector-borne diseases in urban and other complex environments.

Public Health Relevance

The overarching aim of this proposal is to improve maps, models and control of vector-borne disease transmission by developing realistic methods to make inference on unobserved spatial processes that are robust to the inaccuracies and uncertainties inherent in spatial data collection. Our proposal, which focuses on Chagas disease, has the potential to improve the control of many vector-borne diseases in complex environments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI101229-01A1
Application #
8578662
Study Section
Infectious Diseases, Reproductive Health, Asthma and Pulmonary Conditions Study Section (IRAP)
Program Officer
Rao, Malla R
Project Start
2013-06-01
Project End
2018-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$617,058
Indirect Cost
$164,359
Name
University of Pennsylvania
Department
Biostatistics & Other Math Sci
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Levy, Michael Z; Barbu, Corentin M; Castillo-Neyra, Ricardo et al. (2014) Urbanization, land tenure security and vector-borne Chagas disease. Proc Biol Sci 281:20141003
Buttenheim, Alison M; Paz-Soldan, Valerie; Barbu, Corentin et al. (2014) Is participation contagious? Evidence from a household vector control campaign in urban Peru. J Epidemiol Community Health 68:103-9