Malaria remains one of the most devastating infectious diseases of the world, underscoring the need to develop effective vaccines. The current candidate malaria vaccines against the liver stages induce CD8+ T- cell-mediated protection. However, what remains unknown is the manner in which the anti-malarial CD8+ T cells are elicited in vivo. This unanswered question is particularly prominent in view of a very recent study showing that only through intravenous administration (and no other routes) do radiation-attenuated sporozoites (IrSpz) induce a potent malaria-specific CD8+ T-cell response in the livers of monkeys and of mice and provide anti-malarial protection in mice. Therefore, it appears that the nature of vaccine vectors, as well as the routes of vaccination, influences the mode of induction of protective anti-malarial CD8+ T cells in vivo. The overall aim of this proposal is to determine the mechanisms of in vivo induction of anti-malarial CD8+ T cells. SYVPSAEQI, derived from the P. yoelii circumsporozoite (PyCS) protein, is to date the only known CD8+ epitope that mediates protection against P. yoelii infection in mice and is presented by an H-2Kd molecule. Therefore, in addressing our overall goal, we have generated C57BL/6 transgenic (Tg) mice, in which Kd molecule is expressed only on dendritic cell (DC) (CD11c-Kd), macrophage (huCD68-Kd), or hepatocyte (Alb- Kd), by using CD11c promoter, huCD68 promoter, or albumin promoter, respectively. We have also generated MHC-I-Kd Tg mice that express a Kd molecule under the MHC-I promoter, in which we could induce a potent, protective anti-malarial immunity, dependent on both the PyCS protein and CD8+ T cells. These MHC-I-Kd Tg mice will be used as a positive control. In the proposed study, we will immunize the Kd Tg mice with malaria vaccines, including an adenovirus expressing the PyCS antigen, IrPySpz, or live PySpz followed by treatment with chloroquine, by different routes. We will determine the quantity, quality, and durability of PyCS antigen- specific CD8+ T-cell response induced in each group of Kd Tg mice in Aim 1.
In Aim 2, we will challenge these immunized Kd Tg mice with live malaria parasites to determine the level and persistence of protective immunity induced in vivo.
In Aim 3, we will determine which Kd-expressing cells induce the protective anti-malarial immunity by isolating these Kd+ cells from immunized, various Kd Tg mice, and adoptively transferring them to na?ve MHC-I-Kd Tg mice, followed by a malaria challenge. Finally, we will isolate PyCS antigen-specific CD8+ T cells from immunized, various Kd Tg mice and adoptively transfer them to na?ve MHC-I-Kd Tg mice, followed by a malaria challenge, to determine the protective capacity of the CD8+ T cells in Aim 4. Overall, we believe that the identification of the induction mechanisms of anti-malarial protective CD8+ T cells could ultimately lead to the vastly improved designs of potent T-cell-based vaccines against human malaria.

Public Health Relevance

Malaria is still a very devastating disease in our modern society. The aim of this project is to determine how and where anti-malarial CD8+ T cells get elicited by malaria vaccines in mice. In unveiling the important aspects of the mechanisms related to the induction of anti-malarial 'protective' CD8+ T cells, the findings may be able to lead us to ultimately propelling T cell-based malaria vaccine, as a promising tool to eradicate this disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI102891-04
Application #
9232993
Study Section
Vaccines Against Microbial Diseases Study Section (VMD)
Program Officer
Wali, Tonu M
Project Start
2014-03-01
Project End
2018-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
4
Fiscal Year
2017
Total Cost
$350,000
Indirect Cost
$165,401
Name
Aaron Diamond AIDS Research Center
Department
Type
Research Institutes
DUNS #
786658872
City
New York
State
NY
Country
United States
Zip Code
10016
Fernandez-Arias, Cristina; Arias, Clemente F; Zhang, Min et al. (2018) Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines. PLoS One 13:e0190940
Li, Xiangming; Huang, Jing; Kawamura, Akira et al. (2017) Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect. Vaccine 35:3171-3177
Nayak, Deepak K; Zhou, Fangyu; Xu, Min et al. (2017) Zbtb7a induction in alveolar macrophages is implicated in anti-HLA-mediated lung allograft rejection. Sci Transl Med 9:
Nayak, D K; Zhou, F; Xu, M et al. (2016) Long-Term Persistence of Donor Alveolar Macrophages in Human Lung Transplant Recipients That Influences Donor-Specific Immune Responses. Am J Transplant 16:2300-11
Zhang, Min; Kaneko, Izumi; Tsao, Tiffany et al. (2016) A highly infectious Plasmodium yoelii parasite, bearing Plasmodium falciparum circumsporozoite protein. Malar J 15:201
Fernández-Arias, Cristina; Mashoof, Sara; Huang, Jing et al. (2015) Circumsporozoite protein as a potential target for antimalarials. Expert Rev Anti Infect Ther 13:923-6
Huang, Jing; Tsao, Tiffany; Zhang, Min et al. (2015) A sufficient role of MHC class I molecules on hepatocytes in anti-plasmodial activity of CD8 (+) T cells in vivo. Front Microbiol 6:69
Huang, Jing; Tsao, Tiffany; Zhang, Min et al. (2014) Circumsporozoite protein-specific K(d)-restricted CD8+ T cells mediate protective antimalaria immunity in sporozoite-immunized MHC-I-K(d) transgenic mice. Mediators Inflamm 2014:728939