During many types of infections, pathogenic bacteria form multicellular communities called biofilms. In these aggregates, consumption and limited diffusion leads to steep gradients of substrate availability. Microenvironments are established that differ significantly from the chemistries of traditional laboratory liquid cultures. As bactera in biofilms respond to these conditions, the community becomes metabolically heterogeneous and exhibits increased resistance to environmental perturbations and antibiotic treatment. Although the metabolic states of bacteria in biofilms are known to be important for their recalcitrance, many questions remain regarding the principles that underlie their response to substrate limitation. We employ a colony morphology assay to study biofilm development in the prevalent nosocomial pathogen Pseudomonas aeruginosa. We modulate the availability of oxygen and nitrate, known respiratory substrates for this bacterium, and alter the ability of P. aeruginosa to produce phenazines, endogenous pigments that can also act as electron acceptors. We have observed that electron acceptor availability is a major determinant of biofilm structure. These studies suggest that colony wrinkling is an adaptation that allows P. aeruginosa cells to access oxygen through an increased surface area when other electron acceptors are not available. Measurement of the NADH/NAD+ ratio in the wild type and a mutant unable to produce phenazines has indicated that the intracellular redox state is a signal that triggers the morphotypic switch from smooth to wrinkled. Proteomic studies and genetic screens have uncovered candidate regulators, including PAS domain proteins and regulators implicated in anaerobic metabolism and denitrification that likely mediate this developmental transition. Our overall goal is to define the mechanisms underlying redox balancing for cells in biofilms, the conditions that determine their utilization and their spatiotemporal integration during biofilm development. We hypothesize that a complex regulatory network controls metabolic and morphogenetic responses to the conditions in P. aeruginosa biofilms such that intracellular redox homeostasis is maintained. We will map electron acceptor availability and intra- and extracellular redox potentials in developing colonies (Aim 1). We will verify that phenazine biosynthesis/ reduction and denitrification pathways engage in regulatory cross-talk and delineate the regulatory cascades controlling their activity in biofilms (Aim 2). Finally, we will characterize the components required for colony structure determination and investigate PAS domain protein-dependent mechanisms that link electron acceptor availability and community behavior (Aim 3). These multiple lines of inquiry will reveal the 3D distribution of exogenous and endogenous electron acceptors and their effects on bacterial physiology within specific microdomains of P. aeruginosa colonies. The means by which P. aeruginosa integrates environmental cues to support growth and survival in a crowded structure may be broadly applicable to many bacterial pathogens and have the potential to inform future therapeutic considerations.

Public Health Relevance

We study the biofilm-specific metabolism of Pseudomonas aeruginosa, a common hospital-acquired pathogen and a major cause of mortality in patients with the disease cystic fibrosis. P. aeruginosa cells in biofilms become limited for oxygen, and we have uncovered diverse mechanisms whereby these bacteria cope with hypoxia, including community-wide responses that increase biofilm surface area. This work may reveal basic aspects of biofilm physiology that are relevant for many types of bacteria, and expand the current knowledge base informing infection therapeutics.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Taylor, Christopher E,
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Other Domestic Higher Education
New York
United States
Zip Code
Bellin, Daniel L; Sakhtah, Hassan; Zhang, Yihan et al. (2016) Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat Commun 7:10535
Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan et al. (2016) The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 113:E3538-47
Choi, Philip H; Jo, Jeanyoung; Lin, Yu-Cheng et al. (2016) A distinct holoenzyme organization for two-subunit pyruvate carboxylase. Nat Commun 7:12713
Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R et al. (2015) Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models. Appl Environ Microbiol 81:8414-26
Tran, Timothy H; Hsiao, Yu-Shan; Jo, Jeanyoung et al. (2015) Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature 518:120-4
Hölscher, Theresa; Bartels, Benjamin; Lin, Yu-Cheng et al. (2015) Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. J Mol Biol 427:3695-708
Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K et al. (2014) Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat Commun 5:3256
Jo, Jeanyoung; Price-Whelan, Alexa; Dietrich, Lars E P (2014) An aerobic exercise: defining the roles of Pseudomonas aeruginosa terminal oxidases. J Bacteriol 196:4203-5
Chen, Annie I; Dolben, Emily F; Okegbe, Chinweike et al. (2014) Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 10:e1004480
Okegbe, Chinweike; Price-Whelan, Alexa; Dietrich, Lars E P (2014) Redox-driven regulation of microbial community morphogenesis. Curr Opin Microbiol 18:39-45

Showing the most recent 10 out of 11 publications