The envelope glycoprotein of transmitted HIV is less glycosylated compared to viruses from later in infection. Glycans are added or shifted to escape strain-specific neutralizing antibodies, and in some cases these contribute to the formation of broadly neutralizing antibody epitopes. Thus, in some individuals, viral evolution may provide the stimulus for the development of broadly neutralizing antibodies. We hypothesize that early strain-specific neutralizing antibodies target exposed peptidic structures while later affinity matured antibodies from the same clonotype recognize the glycosylated epitope. A secondary hypothesis is that the inability of antibodies elicited in the RV144 vaccine trial to mediate neutralization is because they fail to recognize glycans. We will explore these hypotheses using well-characterized serial samples from HIV-infected women in the CAPRISA cohort and from the RV144 HIV vaccine trial. Serum samples will be run on glycan arrays to determine whether glycan-binding antibodies are preferentially found in infected women who later develop neutralization breadth and to assess overall levels of glycan reactivity in RV144 samples. The finding that V2 binding antibodies that recognize the K169 residue in the V2 region are an immune correlate in RV144, has led us to focus on infected women who develop broadly neutralizing antibodies that target this same residue and are glycan-dependent. We will use novel V1/V2 scaffolds that bind the glycan-reactive broadly neutralizing PG9 monoclonal antibody to study how V2 antibodies develop. Scaffolds will be modified in order to characterize antibody specificities and glycan-reactivity over time, and used in adsorption experiments to assess the neutralizing capacity of V2-directed plasma antibodies. We will define whether anti-V2 binding antibodies are qualitatively different in individuals who later develop broadly neutralizing anti-V2 responses, and whether the V2 specificities elicited in RV144 are similar to those elicited in natural infection. Finally, we will assess whether V2 binding antibodies are the precursors of broadly neutralizing V2 antibodies that develop in some HIV infected individuals by isolating V2 antigen-specific mAbs using single B cell sorting at early and late time points from selected CAPRISA women. These mAbs will be assessed for glycan-binding and functional activity including neutralization and inhibition of ?4?7 binding. Antibody genes from these and other broadly neutralizing mAbs, recently isolated through B cell culture by our collaborators, will be analyzed to determine which features associate with the acquisition of neutralization breadth. Collectively, these data will reveal the pathway to neutralization breadth for anti-V2 antibodies, which may have important implications for understanding and improving on the RV144 results.

Public Health Relevance

Vaccines generally work by inducing protective antibodies. Antibodies found in some HIV-infected people are able to prevent the virus from entering cells by binding to the sugars that surround the HIV particle. We aim to analyze how antibodies that bind to sugars develop in HIV-infected and vaccinated people. This information will be critical for understanding how to design a more effective HIV vaccine.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI104387-04
Application #
9127081
Study Section
HIV/AIDS Vaccines Study Study Section (VACC)
Program Officer
Boggiano, Cesar Augusto
Project Start
2013-08-01
Project End
2017-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Wits Health Consortium (Pty), Ltd
Department
Type
DUNS #
639391218
City
Johannesburg
State
Country
South Africa
Zip Code
2193
Richardson, Simone I; Crowther, Carol; Mkhize, Nonhlanhla N et al. (2018) Measuring the ability of HIV-specific antibodies to mediate trogocytosis. J Immunol Methods 463:71-83
Wibmer, Constantinos Kurt; Richardson, Simone I; Yolitz, Jason et al. (2018) Common helical V1V2 conformations of HIV-1 Envelope expose the ?4?7 binding site on intact virions. Nat Commun 9:4489
Richardson, Simone I; Chung, Amy W; Natarajan, Harini et al. (2018) HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies. PLoS Pathog 14:e1006987
Lertjuthaporn, Sakaorat; Cicala, Claudia; Van Ryk, Donald et al. (2018) Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to ?4?7. PLoS Pathog 14:e1007278
van Eeden, Charmaine; Wibmer, Constantinos Kurt; Scheepers, Cathrine et al. (2018) V2-Directed Vaccine-like Antibodies from HIV-1 Infection Identify an Additional K169-Binding Light Chain Motif with Broad ADCC Activity. Cell Rep 25:3123-3135.e6
Scheepers, Cathrine; Chowdhury, Sudipa; Wright, W Shea et al. (2017) Serum glycan-binding IgG antibodies in HIV-1 infection and during the development of broadly neutralizing responses. AIDS 31:2199-2209
Moore, Penny L; Gorman, Jason; Doria-Rose, Nicole A et al. (2017) Ontogeny-based immunogens for the induction of V2-directed HIV broadly neutralizing antibodies. Immunol Rev 275:217-229
Archary, D; Seaton, K E; Passmore, J S et al. (2016) Distinct genital tract HIV-specific antibody profiles associated with tenofovir gel. Mucosal Immunol 9:821-833
Garrett, Nigel J; Drain, Paul K; Werner, Lise et al. (2016) Diagnostic Accuracy of the Point-of-Care Xpert HIV-1 Viral Load Assay in a South African HIV Clinic. J Acquir Immune Defic Syndr 72:e45-8
Reddy, Kavidha; Ooms, Marcel; Letko, Michael et al. (2016) Functional characterization of Vif proteins from HIV-1 infected patients with different APOBEC3G haplotypes. AIDS 30:1723-9

Showing the most recent 10 out of 12 publications