The aim of this grant proposal is to understand the role of the thymus and thymic trafficking dendritic cells (DCs) in oral tolerance. We have shown that oral administration of antigen (Ag) can affect central tolerance through mechanisms of clonal deletion of developing Ag-specific thymocytes, or by induction of natural regulatory T cells (nTregs), depending on the model Ag used. We present preliminary evidence that specialized gut-derived DC populations access intestinal Ags and transport them to the thymus, which is critical to central tolerance induction by oral Ags. We therefore propose that oral Ags are sampled by gut- associated DCs and transported via the blood into the thymus, where they can impact central tolerance of developing thymocytes specific to oral Ags. Studies under Aim 1 will characterize gut-associated peripheral DC populations that traffic to the thymus homeostatically, and after Ag feeding, and will determine the effects of defined Ag peptides and of gut-associated DC subsets on the developmental fate of Ag-specific thymocytes in vivo (i.e. clonal deletion vs. nTreg induction). Studies under Aim 2 will establish the role of endogenous DC subsets and their thymic trafficking programs on central tolerance to oral Ags. Studies under Aim 3 will explore the requirements of defined endogenous DC subsets and their thymic trafficking programs on the prevention of autoimmunity in oral tolerance. More importantly they will establish a critical role for dominant thymic selection events (i.e. thymic nTreg induction) after oral Ag delivery, in controlling autoimmunity during oral tolerance, because this outcome of thymic tolerance generates immunosuppressive cells with the ability to regulate peripheral T cell responses. Therefore oral tolerance protocols need to be revisited in the clinic with the aim of possibly targeting younger individuals with a higher thymic T cell output or using Ags that elicit the development of immunosuppressive thymic T cell populations vs. the clonal deletion of Ag-specific thymocytes.

Public Health Relevance

This study has the potential to understand how oral administration of self-proteins (i.e. proteins expressed by our own cells and tissues) can suppress pathologic autoimmune responses to that same protein, which is seen in inflammatory disease such as multiple sclerosis, arthritis and diabetes. This project identifies critical white blood cells that target oral proteins to sites in the body where autoaggressive immune cells are either killed off or shut down during the development of the immune system. Results from these studies will offer therapeutic approaches to prevent or abrogate inflammatory disorders by altering the accumulation and/or function of pathogenic white blood cell populations at sites of tissue damage and inflammation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI109452-01A1
Application #
8720619
Study Section
Transplantation, Tolerance, and Tumor Immunology (TTT)
Program Officer
Rothermel, Annette L
Project Start
2014-04-01
Project End
2019-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$350,000
Indirect Cost
$100,000
Name
Palo Alto Institute for Research & Edu, Inc.
Department
Type
DUNS #
624218814
City
Palo Alto
State
CA
Country
United States
Zip Code
94304
Habtezion, Aida; Nguyen, Linh P; Hadeiba, Husein et al. (2016) Leukocyte Trafficking to the Small Intestine and Colon. Gastroenterology 150:340-54
Müller, Antonia M S; Florek, Mareike; Kohrt, Holbrook E K et al. (2016) Blood Stem Cell Activity Is Arrested by Th1-Mediated Injury Preventing Engraftment following Nonmyeloablative Conditioning. J Immunol 197:4151-4162
Nguyen, Linh P; Pan, Junliang; Dinh, Theresa Thanh et al. (2015) Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol 16:207-213