Infections caused by vancomycin-resistant Enterococcus faecium (VREfm) are plagued by limited treatment options and are associated with increased mortality compared to vancomycin-susceptible strains. Daptomycin (DAP), a lipopeptide antibiotic with activity contingent upon an optimized area under the concentration curve (AUC) over the minimum inhibitory concentration (MIC) of the VREfm strain, possesses potent activity against VREfm. However, resistance to DAP occurs clinically, and data demonstrate that doses above the currently approved 6 mg/kg/day are necessary to prevent DAP resistance emergence. Even elevated DAP doses may not be sufficient to prevent resistance, as VREfm with mutations in two different regulatory gene systems (liaFSR and yycFG) demonstrate the ability to resist treatment with DAP alone. These mutations are frequent among VREfm with DAP MICs in the higher levels of susceptible (3-4 g/ml). As such, novel therapeutic regimens involving combinations are necessary and warrant study. Beta-lactams are of interest in combination with DAP; as limited in vitro data have demonstrated the ability of beta-lactams to enhance DAP activity against VREfm. The overall objective of our study is to define the DAP dose exposure breakpoint (pharmacokinetic/pharmacodynamic [PK/PD] breakpoint) with DAP regimens alone against VREfm with known genetic changes giving them proclivity for DAP resistance and then evaluate the ability of beta-lactams to positively affect that breakpoint. These data will provide important information on the optimal DAP exposure (dosing regimens) in combination with beta-lactams to prevent DAP resistance and provide bactericidal activity. The long-term goal is to optimize VREfm infection patient outcomes and preserve DAP as a viable agent against these resistant pathogens while determining the optimal beta-lactam to use in combination for DAP resistance prevention when the DAP MIC is elevated. The central hypothesis is that beta-lactams will increase the DAP AUC0-24/MIC ratio by lowering the VREfm DAP MIC and thus provide improved resistance prevention and bactericidal activity. The rationale behind the proposed research is that data on the DAP dose relationship with VREfm and how it is affected by beta-lactam co-therapy will lead to optimal treatment regimens for patients with these insidious infections. The central hypothesis will be tested by pursuing three Specific Aims: 1) Determine if an AUC24h/MIC breakpoint is achievable at clinical dosages to overcome DAP resistance in VREfm with predisposition for DAP resistance in an in vitro PK/PD model, 2) Evaluate several key beta-lactams to optimize DAP AUC24h/MIC exposure and restore DAP activity against VREfm with predisposition for DAP resistance in an in vitro PK/PD model, and 3) test the in vitro derived DAP AUC24h/MIC exposures alone and in combination with a beta-lactam for VRE-faecium in a well-established animal endocarditis model to validate these parameters. Under the first two aims, a well-established in vitro model of simulated endocardial vegetations (SEVs) (previously validated against a rabbit endocarditis model) will be used to determine breakpoints (and corresponding DAP doses) using various clinical doses of DAP and beta-lactams. The proposed research is innovative because we will use both in vitro and in vivo PK/PD models to determine optimal beta-lactam plus DAP combination regimens against VREfm that have yet to be studied in-depth with complex modeling such as this. The research is significant because it is expected to provide knowledge integral to understanding optimal DAP dosing strategies and the best beta-lactam for synergy against VREfm with proclivity for DAP resistance. Once such knowledge is available, improved patient outcomes and the preservation of DAP as a viable therapeutic option in the treatment of VREfm infections will be the ultimate result.

Public Health Relevance

Vancomycin-resistant Enterococcus faecium (VREfm) is one of the most problematic bacteria in the hospital setting, often causing serious, life-threatening infections. Infections with this multidrug-resistant pathogen are problematic because there are few reliable therapeutic options to treat them. Daptomycin (DAP) demonstrates bactericidal activity against VREfm in vitro, but the development of resistance during therapy has threatened its viability for future use. This research proposal will evaluate several dosing regimens of DAP against VREfm strains in the DAP 'susceptible' minimum inhibitory concentration range with genetically proven proclivity for DAP resistance development. It will also evaluate several beta-lactam agents in combination with DAP at optimized dosing regimens to determine the optimal beta-lactam agent to use with DAP against VREfm, lower the necessary dose exposures of DAP for clinical success, and successfully prevent the emergence of DAP resistance. Knowledge gained from this research will help preserve DAP for future use and ultimately improve patient outcomes in VREfm infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI121400-01
Application #
9009253
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Huntley, Clayton C
Project Start
2015-12-10
Project End
2020-11-30
Budget Start
2015-12-10
Budget End
2016-11-30
Support Year
1
Fiscal Year
2016
Total Cost
$396,425
Indirect Cost
$132,408
Name
Wayne State University
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Claeys, Kimberly C; Zasowski, Evan J; Trinh, Trang D et al. (2018) Antimicrobial Stewardship Opportunities in Critically Ill Patients with Gram-Negative Lower Respiratory Tract Infections: A Multicenter Cross-Sectional Analysis. Infect Dis Ther 7:135-146
Tran, Kieu-Nhi; Rybak, Michael J (2018) ?-Lactam Combinations with Vancomycin Show Synergistic Activity against Vancomycin-Susceptible Staphylococcus aureus, Vancomycin-Intermediate S. aureus (VISA), and Heterogeneous VISA. Antimicrob Agents Chemother 62:
Avery, Lindsay M; Kuti, Joseph L; Weisser, Maja et al. (2018) Pharmacodynamic Analysis of Daptomycin-Treated Enterococcal Bacteremia: It Is Time to Change the Breakpoint. Clin Infect Dis :
Zasowski, Evan J; Murray, Kyle P; Trinh, Trang D et al. (2018) Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrob Agents Chemother 62:
Kebriaei, Razieh; Rice, Seth A; Singh, Kavindra V et al. (2018) Influence of Inoculum Effect on the Efficacy of Daptomycin Monotherapy and in Combination with ?-Lactams against Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Antimicrob Agents Chemother 62:
Garcia-de-la-Maria, C; Xiong, Y Q; Pericas, J M et al. (2017) Impact of High-Level Daptomycin Resistance in the Streptococcus mitis Group on Virulence and Survivability during Daptomycin Treatment in Experimental Infective Endocarditis. Antimicrob Agents Chemother 61:
Finch, Natalie A; Zasowski, Evan J; Murray, Kyle P et al. (2017) A Quasi-Experiment To Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity. Antimicrob Agents Chemother 61:
Zasowski, Evan J; Trinh, Trang D; Claeys, Kimberly C et al. (2017) Multicenter Observational Study of Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrob Agents Chemother 61:
Hall Snyder, Ashley D; Werth, Brian J; Nonejuie, Poochit et al. (2016) Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an In Vitro Pharmacokinetic-Pharmacodynamic Model. Antimicrob Agents Chemother 60:5716-23
Zasowski, Evan J; Claeys, Kimberly C; Lagnf, Abdalhamid M et al. (2016) Time Is of the Essence: The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections. Clin Infect Dis 62:1242-1250