Investigations from our laboratory revealed that Nov, a member of the CCN family of proteins, is expressed by osteoblasts and its transcript levels are regulated by transforming growth factors (TGF) beta and bone morphogenetic proteins (BMP). CCN proteins have been shown to bind and interact with TGF beta, BMPs and Wnt, but the function of Nov in cells of the osteoblastic lineage is not known. Consequently, we explored the function of Nov in skeletal cells, in vitro and in vivo, and found that Nov binds BMPs and determines the cellular fate of undifferentiated stromal cells. Constitutive overexpression of Nov in ST-2 stromal cells resulted in impaired osteoblastic differentiation. Nov overexpression opposed biological effects of BMP-2 and Wnt 3 and impaired BMP-2 and Wnt signaling in ST-2 cells, indicating that Nov has BMP-2 and Wnt antagonistic activity, as it has been reported for classic BMP antagonists. In addition, transgenic mice overexpressing Nov under the control of the osteocalcin promoter exhibited osteopenia secondary to decreased bone formation.
The aim of the proposed studies is to understand the function of Nov in bone in vivo and in vitro and define mechanisms involved in its inhibitory effects on osteoblastogenesis and bone formation. For this purpose, we have created transgenic mouse lines overexpressing Nov and created nov null mice.
Our specific aims are: 1) To determine the function of Nov in vivo by transgenic overexpression of Nov under the control of the type I collagen or the osteocalcin promoter. The skeletal phenotype of transgenic mice will be compared to that of wild type mice and determined by histomorphometry, contact radiography, densitometry and micro CT scanning;2) To determine the function of Nov in vivo by targeted gene deletion. The skeletal phenotype will be assessed with histomorphometric, radiological, and structural techniques;and 3) To determine the mechanism of action of Nov in vitro in stromal and osteoblastic cells overexpressing Nov and examining the behavior of nov null cells. The impact of Nov on the differentiation of cells of the osteoblastic lineage and mechanisms involved will be determined. These investigations should clarify the role of Nov in bone cell function, and its interactions with BMP and Wnt signaling pathways.

Public Health Relevance

. This project will provide novel information on proteins that regulate bone formation and is relevant to our understanding of mechanisms involved in osteoporosis and developments of new therapies for this disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR021707-31
Application #
8271276
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Chen, Faye H
Project Start
1981-04-01
Project End
2014-05-31
Budget Start
2012-06-01
Budget End
2014-05-31
Support Year
31
Fiscal Year
2012
Total Cost
$255,359
Indirect Cost
$67,180
Name
St. Francis Hospital and Medical Center
Department
Type
DUNS #
077314656
City
Hartford
State
CT
Country
United States
Zip Code
06105
Zanotti, Stefano; Kalajzic, Ivo; Aguila, Hector Leonardo et al. (2014) Sex and genetic factors determine osteoblastic differentiation potential of murine bone marrow stromal cells. PLoS One 9:e86757
He, Qing; Yang, Xuehui; Gong, Yan et al. (2014) Deficiency of Sef is associated with increased postnatal cortical bone mass by regulating Runx2 activity. J Bone Miner Res 29:1217-31
Canalis, Ernesto; Zanotti, Stefano; Smerdel-Ramoya, Anna (2014) Connective tissue growth factor is a target of notch signaling in cells of the osteoblastic lineage. Bone 64:273-80
Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto et al. (2014) Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor. Am J Physiol Lung Cell Mol Physiol 306:L786-96
Canalis, Ernesto (2013) Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575-83
Zanotti, Stefano; Canalis, Ernesto (2012) Nemo-like kinase inhibits osteoblastogenesis by suppressing bone morphogenetic protein and WNT canonical signaling. J Cell Biochem 113:449-56
Zanotti, Stefano; Canalis, Ernesto (2012) Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int 90:69-75
Canalis, Ernesto; Brunet, Lisa J; Parker, Kristen et al. (2012) Conditional inactivation of noggin in the postnatal skeleton causes osteopenia. Endocrinology 153:1616-26
Canalis, Ernesto; Parker, Kristen; Zanotti, Stefano (2012) Gremlin1 is required for skeletal development and postnatal skeletal homeostasis. J Cell Physiol 227:269-77
Beamer, Wesley G; Shultz, Kathryn L; Coombs 3rd, Harold F et al. (2011) BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat. J Bone Miner Res 26:88-99

Showing the most recent 10 out of 114 publications