The long term goal of this study is to define new therapeutic targets of osteoclast related bone diseases, such as osteoporosis and tumor bone metastasis. The immediate goal of this study is to understand the mechanisms underlying the transcription factors that regulate osteoclast lineage commitment and differentiation. The critical need for the treatments of osteoclast related bone diseases has been exacerbated by the recent discovery that the negative effects (e.g., jaw osteonecrosis) of currently used osteoclast inhibitors may outweigh the benefits. The mechanism underlying transcription factors that specify osteoclast lineage commitment, differentiation, and function remains unclear. It is also necessary to clarify why M-CSF alone induces precursors to differentiate into macrophages, while both M-CSF and RANKL induce precursors to differentiate into osteoclasts. Further study is needed to address these biological questions. As a step towards understanding the transcription factors which modulate osteoclast gene (e.g., cathepsin K) expression and osteoclast differentiation, we are characterizing the cathepsin K critical cis-regulatory elements (CCREs). We found a CCAAT/enhancer-binding protein ? (C/EBP?) binding site as a CCRE and confirmed C/EBP? as its trans-regulatory factor as the CCRE binding protein (CCREBP). Our Preliminary Studies further demonstrated that only the combined stimulation of M-CSF and RANKL will induce C/EBP? high expression;that in vitro C/EBP? knockdown blocks osteoclast differentiation and overexpression increase osteoclast formation;and that C/EBP? knockout in mice (C/EBP?-/-) impaired osteoclastogenesis and resulted in an osteopetrotic phenotype. Based on our Preliminary Study data, we hypothesize that C/EBP? is the key osteoclastogenesis transcription factor that regulates osteoclast lineage commitment and differentiation in the M-CSF and RANKL-dependent signaling pathway(s) through interactions with its heterodimerization partners and regulation of osteoclast genes. We will test this hypothesis through four specific aims:
in Aim 1, we will investigate the role of C/EBP? in osteoclast differentiation by characterizing the phenotypes and pathomechanism of C/EBP? null mutation mice (C/EBP?-/-) compared with C/EBP?+/+ mice.
In Aim 2, we will reveal the function of C/EBP? at various stages of osteoclast differentiation through characterization of the phenotypes and pathomechanism of three C/EBP? conditional knockout mouse models.
In Aim 3, we will define in vitro the roles of C/EBP? at different stages of osteoclast differentiation using RNAi knockdown as a loss-of-function study and retrovirus overexpression as a gain-of-function study.
In Aim 4, we dissect the mechanism of C/EBP? interactions that confers osteoclastic specificity by characterizing C/EBP? heterodimerization partners, downstream genes and their functions. This study will not only improve our understanding of the role of transcription factors in normal osteoclast differentiation and function and in osteolytic diseases (e.g., osteoporosis and bone metastases), but it will also facilitate the design of novel approaches for their precise treatment using drug or somatic gene therapy.

Public Health Relevance

This study endeavors to increase our understanding of the mechanisms underlying the transcription factors that regulate osteoclast lineage commitment and differentiation. In so doing, this study will elucidate how transcription factors specify osteoclast cell lineage commitment and differentiation. This study will not only improve our understanding of the role of transcription factors in normal osteoclast differentiation and functio and in osteolytic diseases (e.g., osteoporosis and bone metastases), but it will also facilitate th design of novel approaches for their precise treatment using drug or somatic gene therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
2R01AR044741-11A1
Application #
8286645
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Chen, Faye H
Project Start
1999-02-01
Project End
2017-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
11
Fiscal Year
2012
Total Cost
$329,625
Indirect Cost
$104,625
Name
University of Alabama Birmingham
Department
Pathology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Tian, Fei; Wu, Mengrui; Deng, Lianfu et al. (2014) Core binding factor beta (Cbf?) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and J Bone Miner Res 29:1564-74
Chen, Wei; Ma, Junqing; Zhu, Guochun et al. (2014) Cbf? deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbf? required for skeletal development. Proc Natl Acad Sci U S A 111:8482-7
Wu, Mengrui; Li, Chenguan; Zhu, Guochun et al. (2014) Deletion of core-binding factor ? (Cbf?) in mesenchymal progenitor cells provides new insights into Cbf?/Runxs complex function in cartilage and bone development. Bone 65:49-59
Wu, Mengrui; Li, Yi-Ping; Zhu, Guochun et al. (2014) Chondrocyte-specific knockout of Cbf? reveals the indispensable function of Cbf? in chondrocyte maturation, growth plate development and trabecular bone formation in mice. Int J Biol Sci 10:861-72
Keinan, David; Yang, Shuying; Cohen, Robert E et al. (2014) Role of regulator of G protein signaling proteins in bone. Front Biosci (Landmark Ed) 19:634-48
Wang, Yiping; Li, Yi-Ping; Paulson, Christie et al. (2014) Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 19:379-407
Chen, Wei; Zhu, Guochun; Hao, Liang et al. (2013) C/EBP? regulates osteoclast lineage commitment. Proc Natl Acad Sci U S A 110:7294-9
Feng, Shengmei; Zhu, Guochun; McConnell, Matthew et al. (2013) Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis. Int J Biol Sci 9:853-62
Bian, Qin; Wang, Yong-Jun; Liu, Shu-Fen et al. (2012) Osteoarthritis: genetic factors, animal models, mechanisms, and therapies. Front Biosci (Elite Ed) 4:74-100
Chen, Guiqian; Deng, Chuxia; Li, Yi-Ping (2012) TGF-ýý and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272-88

Showing the most recent 10 out of 31 publications