Pemphigus is a class of devastating epidermal blistering diseases in which autoantibodies are generated against cell-cell adhesion molecules present in the skin and mucous membranes. Pemphigus IgG target desmosomes, a structure that couples the keratin intermediate filament network to regions of strong cell-cell adhesion. In pemphigus vulgaris (PV), the primary target of the autoantibodies is desmoglein-3 (Dsg3), a member of the desmosomal cadherin subfamily of adhesion molecules. The work outlined in this application investigates the mechanisms by which IgG from pemphigus vulgaris patients disrupts cell-cell adhesion. It is hypothesized that PV IgG disrupt desmosomes by causing Dsg3 internalization from the cell surface, leading to desmosome destabilization and loss of keratinocyte adhesion. This hypothesis will be tested using a series of in vitro cell culture models that employ cellular and molecular approaches to define the mechanisms by which PV IgG cause Dsg3 internalization and desmosome disassembly. These studies will reveal the cellular machinery and pathways that mediate Dsg3 endocytosis, and how cytoplasmic components of the desmosome regulate Dsg3 internalization. Furthermore, a panel of antibody reagents will be employed, including PV patient IgG, human monoclonal antibodies cloned from patients, and mouse monoclonal Dsg3 antibodies with varying degrees of pathogenic activity. These reagents will be used to reveal relationships between desmosome disassembly pathways and antibody pathogenicity profiles to determine how pemphigus IgG causes disease at the cellular level.

Public Health Relevance

These studies are designed to generate new insights into the basic cellular mechanisms that regulate cell-cell adhesion, and to expose new therapeutic targets for the treatment of pemphigus and other skin diseases characterized by epidermal fragility.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR048266-10
Application #
8303018
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Cibotti, Ricardo
Project Start
2002-08-01
Project End
2013-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
10
Fiscal Year
2012
Total Cost
$324,086
Indirect Cost
$114,998
Name
Emory University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann et al. (2016) Ankyrin-G Inhibits Endocytosis of Cadherin Dimers. J Biol Chem 291:691-704
Roberts, Brett J; Svoboda, Robert A; Overmiller, Andrew M et al. (2016) Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover. J Biol Chem 291:24857-24865
Stahley, Sara N; Bartle, Emily I; Atkinson, Claire E et al. (2016) Molecular organization of the desmosome as revealed by direct stochastic optical reconstruction microscopy. J Cell Sci 129:2897-904
Stahley, Sara N; Warren, Maxine F; Feldman, Ron J et al. (2016) Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. J Invest Dermatol 136:59-66
Stahley, Sara N; Warren, Maxine F; Feldman, Ron J et al. (2015) Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Pemphigus Vulgaris Patient Tissue. J Invest Dermatol :
Stahley, Sara N; Kowalczyk, Andrew P (2015) Desmosomes in acquired disease. Cell Tissue Res 360:439-56
Stahley, Sara N; Saito, Masataka; Faundez, Victor et al. (2014) Desmosome assembly and disassembly are membrane raft-dependent. PLoS One 9:e87809
Tucker, Dana K; Stahley, Sara N; Kowalczyk, Andrew P (2014) Plakophilin-1 protects keratinocytes from pemphigus vulgaris IgG by forming calcium-independent desmosomes. J Invest Dermatol 134:1033-43
Kowalczyk, Andrew P; Green, Kathleen J (2013) Structure, function, and regulation of desmosomes. Prog Mol Biol Transl Sci 116:95-118
Kowalczyk, Andrew P; Nanes, Benjamin A (2012) Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling. Subcell Biochem 60:197-222

Showing the most recent 10 out of 29 publications