This proposal is submitted as a competing continuation of NIH R01 AR49880-03, Hormone, Cytokine and Genetic Risks for RA in Women, in which we identified reproductive factors including breastfeeding, early menarche, and irregular menses, inflammatory markers including anti-CCP antibodies, and TNFR2 levels and a novel RA risk allele in the prolactin gene as significant risk factors for RA. Extending our work to develop clinical risk prediction models, this proposal builds on our strong track record of studying RA epidemiology in the Nurses'Health Studies, the largest prospective rheumatic disease cohorts in the world. Recent whole genome association studies in RA from our co-investigators have identified novel risk loci. However, despite rapid advances in understanding the genetic basis of RA, it is unclear how to utilize this information clinically for RA prediction. Identification of autoantibodies and cytokines present many years prior to RA onset provides an exciting opportunity to intervene during the pre-clinical phase. However, it is critical to understand the role of RA risk factors for the targeting of potentially toxic therapies at highest risk individuals. Predictive modeling is critical in the progress towards an RA prevention clinical trial. We propose to build a RA clinical risk prediction models incorporating RA genetic susceptibility alleles and environmental risk factors and their interactions, with validation in large U.S. and Swedish cohorts. Further validation in a unique high risk RA cohort, representing a target group for prevention trials, will lead to understanding of whether the models predict development of pre-clinical RA, essential information for future RA prevention trials. We propose the following aims: 1) Using validated RA susceptibility alleles, derive a Genetic Risk Score (GRS) and examine associations between GRS and RA risk in general, and with seropositive RA risk specifically, in 700 RA cases and 700 matched controls from the Nurses'Health Study (NHS) and in 2000 cases and 1150 matched controls from the Epidemiologic Investigation of RA (EIRA) cohort;2) Develop two RA clinical prediction models to predict 5-year RA risk for all RA and for subsets defined by sex, immune phenotype, and family history: (a) an "environmental" model using behavioral factors, environmental exposures, and clinical factors , and (b) an "environmental + genetic" model with environmental factors, GRS, and gene-environment interaction terms;and 3) Examine the goodness of fit of the prediction models developed and validated in Aim 2 for predicting an intermediate endpoint, pre-clinical RA defined autoantibodies, or RA symptoms, in a unique high risk RA cohort, the Studies of the Etiologies of Rheumatoid Arthritis (SERA) comprised of 2100 first-degree relatives of RA cases and of 800 individuals enriched with HLA-DR4 alleles (total N=2900). The ability to accurately predict an individual's 5-year risk of developing clinical RA based on a simple genetic risk score, behavioral, environmental and clinical risk factors would be an enormous advance, enabling risk factor modification and earlier introduction of effective therapies to abrogate the destruction and disability of this disease.

Public Health Relevance

This study will describe the characteristics of patients with rheumatoid arthritis (RA) who successfully engage in physical activity and those who do not. This information will be used to develop personally tailored physical activity counseling to promote health and reduce cardiovascular risk of patients with RA.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Neurological, Aging and Musculoskeletal Epidemiology (NAME)
Program Officer
Wang, Yan Z
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Sparks, Jeffrey A; Chen, Chia-Yen; Jiang, Xia et al. (2015) Improved performance of epidemiologic and genetic risk models for rheumatoid arthritis serologic phenotypes using family history. Ann Rheum Dis 74:1522-9
Hu, Yang; Costenbader, Karen H; Gao, Xiang et al. (2015) Mediterranean diet and incidence of rheumatoid arthritis in women. Arthritis Care Res (Hoboken) 67:597-606
Lu, Bing; Solomon, Daniel H; Costenbader, Karen H et al. (2014) Alcohol consumption and risk of incident rheumatoid arthritis in women: a prospective study. Arthritis Rheumatol 66:1998-2005
Hu, Yang; Costenbader, Karen H; Gao, Xiang et al. (2014) Sugar-sweetened soda consumption and risk of developing rheumatoid arthritis in women. Am J Clin Nutr 100:959-67
Lu, Bing; Hiraki, Linda T; Sparks, Jeffrey A et al. (2014) Being overweight or obese and risk of developing rheumatoid arthritis among women: a prospective cohort study. Ann Rheum Dis 73:1914-22
Sparks, Jeffrey A; Iversen, Maura D; Miller Kroouze, Rachel et al. (2014) Personalized Risk Estimator for Rheumatoid Arthritis (PRE-RA) Family Study: rationale and design for a randomized controlled trial evaluating rheumatoid arthritis risk education to first-degree relatives. Contemp Clin Trials 39:145-57
Kasturi, Shanthini; Goldstein, Barbara L; Malspeis, Susan et al. (2014) Comparison of the 1987 American College of Rheumatology and the 2010 American College of Rheumatology/European League against Rheumatism criteria for classification of rheumatoid arthritis in the Nurses' Health Study cohorts. Rheumatol Int 34:407-11
Liao, Katherine P; Diogo, Dorothee; Cui, Jing et al. (2014) Association between low density lipoprotein and rheumatoid arthritis genetic factors with low density lipoprotein levels in rheumatoid arthritis and non-rheumatoid arthritis controls. Ann Rheum Dis 73:1170-5
Sparks, Jeffrey A; Chen, Chia-Yen; Hiraki, Linda T et al. (2014) Contributions of familial rheumatoid arthritis or lupus and environmental factors to risk of rheumatoid arthritis in women: a prospective cohort study. Arthritis Care Res (Hoboken) 66:1438-46
Lu, Bing; Rho, Young Hee; Cui, Jing et al. (2014) Associations of smoking and alcohol consumption with disease activity and functional status in rheumatoid arthritis. J Rheumatol 41:24-30

Showing the most recent 10 out of 71 publications